Василиса явикс - интеллектуальная поисковая система. завтра уже здесь! Определение и свойства вычетов Сумма приведенных вычетов по модулю n

m - набор, составленный из всех чисел полной системы вычетов по модулю m , взаимно простых с m . Приведённая система вычетов по модулю m состоит из φ(m ) чисел, где φ(m ) - функция Эйлера . В качестве приведённой системы вычетов по модулю m обычно берутся взаимно простые с m числа от 0 до m - 1 .

Wikimedia Foundation . 2010 .

  • Drag-and-drop
  • 2С25 «Спрут-СД»

Смотреть что такое "Приведённая система вычетов" в других словарях:

    Приведённая система вычетов - часть полной системы вычетов (См. Полная система вычетов), состоящая из чисел взаимно простых с модулем m. П. с. в. содержит φ(m) чисел [φ(m) число чисел, взаимно простых с m и меньших m]. Всякие φ(m) чисел, не сравнимые по модулю m и… … Большая советская энциклопедия

    Приведенная система вычетов - Приведённая система вычетов по модулю m набор, составленный из всех чисел полной системы вычетов по модулю m, взаимно простых с m. Приведённая система вычетов по модулю m состоит из φ(m) чисел, где φ(m) функция Эйлера. В качестве приведённой… … Википедия

    Мультипликативная группа кольца вычетов - Приведённая система вычетов по модулю m множество всех чисел полной системы вычетов по модулю m, взаимно простых с m. Приведённая система вычетов по модулю m состоит из φ(m) чисел, где φ(·) функция Эйлера. В качестве приведённой системы вычетов… … Википедия

    Функция Эйлера - Не следует путать с функцией распределения простых чисел. Первая тысяча значений Функция Эйлера φ(n) мультипликативная … Википедия

    Сравнение по модулю - Сравнение по модулю натурального числа n в теории чисел отношение эквивалентности на кольце целых чисел, связанное с делимостью на n. Факторкольцо по этому отношению называется кольцом вычетов. Совокупность соответствующих тождеств и… … Википедия

    Конечная группа - Симметрия снежинки связана с группой поворотов на угол, кратный 60° Конечная группа алгебраическая группа, содержащая конечное число элементов (это число называется её порядком). Далее группа предполагается мультипликативной, то есть операция в… … Википедия

    Четверная группа Клейна - Четверная группа Клейна группа четвёртого порядка, играет важную роль в высшей алгебре. Содержание 1 Определение 2 Обозначение 3 … Википедия

Кольцо вычетов по модулю n обозначают или . Его мультипликативную группу, как и в общем случае групп обратимых элементов колец, обозначают × × .

Простейший случай

Чтобы понять структуру группы , можно рассмотреть частный случай , где - простое число, и обобщить его. Рассмотрим простейший случай, когда , то есть .

Теорема: - циклическая группа.

Пример : Рассмотрим группу

= {1,2,4,5,7,8} Генератором группы является число 2. Как видим, любой элемент группы может быть представлен в виде , где ≤ℓφ . То есть группа - циклическая.

Общий случай

Для рассмотрения общего случая необходимо определение примитивного корня . Примитивный корень по простому модулю - это число, которое вместе со своим классом вычетов порождает группу .

Примеры: 2 11 ; 8 - примитивный корень по модулю 11 ; 3 не является примитивным корнем по модулю 11 .

В случае целого модуля определение такое же.

Структуру группы определяет следующая теорема: Если p - нечётное простое число и l - целое положительное, то существуют примитивные корни по модулю , то есть - циклическая группа.

Пример

Приведённая система вычетов по модулю состоит из классов вычетов: . Относительно определённого для классов вычетов умножения они образуют группу, причём и взаимно обратны (то есть ), а и обратны сами себе.

Структура группы

Запись означает «циклическая группа порядка n».

Структура группы (Z/ n Z) ×
× φ λ Генератор группы × φ λ Генератор группы × φ λ Генератор группы × φ λ Генератор группы
1 C 1 1 1 0 33 C 2 ×C 10 20 10 2, 10 65 C 4 ×C 12 48 12 2, 12 97 C 96 96 96 5
2 C 1 1 1 1 34 C 16 16 16 3 66 C 2 ×C 10 20 10 5, 7 98 C 42 42 42 3
3 C 2 2 2 2 35 C 2 ×C 12 24 12 2, 6 67 C 66 66 66 2 99 C 2 ×C 30 60 30 2, 5
4 C 2 2 2 3 36 C 2 ×C 6 12 6 5, 19 68 C 2 ×C 16 32 16 3, 67 100 C 2 ×C 20 40 20 3, 99
5 C 4 4 4 2 37 C 36 36 36 2 69 C 2 ×C 22 44 22 2, 68 101 C 100 100 100 2
6 C 2 2 2 5 38 C 18 18 18 3 70 C 2 ×C 12 24 12 3, 69 102 C 2 ×C 16 32 16 5, 101
7 C 6 6 6 3 39 C 2 ×C 12 24 12 2, 38 71 C 70 70 70 7 103 C 102 102 102 5
8 C 2 ×C 2 4 2 3, 5 40 C 2 ×C 2 ×C 4 16 4 3, 11, 39 72 C 2 ×C 2 ×C 6 24 6 5, 17, 19 104 C 2 ×C 2 ×C 12 48 12 3, 5, 103
9 C 6 6 6 2 41 C 40 40 40 6 73 C 72 72 72 5 105 C 2 ×C 2 ×C 12 48 12 2, 29, 41
10 C 4 4 4 3 42 C 2 ×C 6 12 6 5, 13 74 C 36 36 36 5 106 C 52 52 52 3
11 C 10 10 10 2 43 C 42 42 42 3 75 C 2 ×C 20 40 20 2, 74 107 C 106 106 106 2
12 C 2 ×C 2 4 2 5, 7 44 C 2 ×C 10 20 10 3, 43 76 C 2 ×C 18 36 18 3, 37 108 C 2 ×C 18 36 18 5, 107
13 C 12 12 12 2 45 C 2 ×C 12 24 12 2, 44 77 C 2 ×C 30 60 30 2, 76 109 C 108 108 108 6
14 C 6 6 6 3 46 C 22 22 22 5 78 C 2 ×C 12 24 12 5, 7 110 C 2 ×C 20 40 20 3, 109
15 C 2 ×C 4 8 4 2, 14 47 C 46 46 46 5 79 C 78 78 78 3 111 C 2 ×C 36 72 36 2, 110
16 C 2 ×C 4 8 4 3, 15 48 C 2 ×C 2 ×C 4 16 4 5, 7, 47 80 C 2 ×C 4 ×C 4 32 4 3, 7, 79 112 C 2 ×C 2 ×C 12 48 12 3, 5, 111
17 C 16 16 16 3 49 C 42 42 42 3 81 C 54 54 54 2 113 C 112 112 112 3
18 C 6 6 6 5 50 C 20 20 20 3 82 C 40 40 40 7 114 C 2 ×C 18 36 18 5, 37
19 C 18 18 18 2 51 C 2 ×C 16 32 16 5, 50 83 C 82 82 82 2 115 C 2 ×C 44 88 44 2, 114
20 C 2 ×C 4 8 4 3, 19 52 C 2 ×C 12 24 12 7, 51 84 C 2 ×C 2 ×C 6 24 6 5, 11, 13 116 C 2 ×C 28 56 28 3, 115
21 C 2 ×C 6 12 6 2, 20 53 C 52 52 52 2 85 C 4 ×C 16 64 16 2, 3 117 C 6 ×C 12 72 12 2, 17
22 C 10 10 10 7 54 C 18 18 18 5 86 C 42 42 42 3 118 C 58 58 58 11
23 C 22 22 22 5 55 C 2 ×C 20 40 20 2, 21 87 C 2 ×C 28 56 28 2, 86 119 C 2 ×C 48 96 48 3, 118
24 C 2 ×C 2 ×C 2 8 2 5, 7, 13 56 C 2 ×C 2 ×C 6 24 6 3, 13, 29 88 C 2 ×C 2 ×C 10 40 10 3, 5, 7 120 C 2 ×C 2 ×C 2 ×C 4 32 4 7, 11, 19, 29
25 C 20 20 20 2 57 C 2 ×C 18 36 18 2, 20 89 C 88 88 88 3 121 C 110 110 110 2
26 C 12 12 12 7 58 C 28 28 28 3 90 C 2 ×C 12 24 12 7, 11 122 C 60 60 60 7
27 C 18 18 18 2 59 C 58 58 58 2 91 C 6 ×C 12 72 12 2, 3 123 C 2 ×C 40 80 40 7, 83
28 C 2 ×C 6 12 6 3, 13 60 C 2 ×C 2 ×C 4 16 4 7, 11, 19 92 C 2 ×C 22 44 22 3, 91 124 C 2 ×C 30 60 30 3, 61
29 C 28 28 28 2 61 C 60 60 60 2 93 C 2 ×C 30 60 30 11, 61 125 C 100 100 100 2
30 C 2 ×C 4 8 4 7, 11 62 C 30 30 30 3 94 C 46 46 46 5 126 C 6 ×C 6 36 6 5, 13
31 C 30 30 30 3 63 C 6 ×C 6 36 6 2, 5 95 C 2 ×C 36 72 36 2, 94 127 C 126 126 126 3
32 C 2 ×C 8 16 8 3, 31 64 C 2 ×C 16 32 16 3, 63 96 C 2 ×C 2 ×C 8 32 8 5, 17, 31 128 C 2 ×C 32 64 32 3, 127

Применение

На сложности, Ферма, Хули, . Уоринг сформулировал теорему Вильсона, а Лагранж её доказал. Эйлер предположил существование примитивных корней по модулю простого числа. Гаусс это доказал. Артин выдвинул свою гипотезу о существовании и количественной оценке простых чисел, по модулю которых заданное целое число является первообразным корнем. Брауэр внес вклад в исследование проблемы существования наборов последовательных целых чисел, каждое из которых - k-ая степень по модулю p. Билхарц доказал аналог гипотезы Артина. Хули доказал гипотезу Артина с предположением справедливости расширенной гипотезы Римана в полях алгебраических чисел.

Примечания

Литература

  • Айерлэнд К., Роузен М. Классическое введение в современную теорию чисел. - М. : Мир, 1987.
  • Алферов А.П., Зубов А.Ю., Кузьмин А.С. Черемушкин А.В. Основы криптографии. - Москва: «Гелиос АРВ», 2002.
  • Ростовцев А.Г., Маховенко Е.Б. Теоретическая криптография. - Санкт-Петербург: НПО «Профессионал», 2004.

Согласно свойству сравнений №15, числа одного и того же класса по модулю m имеют с модулем m один и тот же НОД. Особенно важны классы, для которых он равен 1.

Взяв от каждого из таких классов по одному числу, получим приведенную систему вычетов по модулю m . Обычно ее выделяют из системы наименьших неотрицательных вычетов по модулю m .

Приведенная система наименьших неотрицательных вычетов по модулю m обозначается U m .

Количество чисел в приведенной системе вычетов по модулю m , очевидно, равно φ(m ).

Пример :

Приведенная система вычетов по модулю 15 есть {1; 2; 4; 7; 8; 11; 13; 14}. Заметим, что φ(15)=(5–1)∙(3–1)= 8 и действительно, в приведенной системе вычетов по модулю 15 ровно 8 элементов.

Утверждение 1

Любые φ(m ) чисел, попарно несравнимых по модулю m и взаимно простых с m , образуют приведенную систему вычетов.

(Доказательство очевидно как в утверждении 1 пункт 2)

Утверждение 2

Если (a , m ) = 1, x пробегает приведенную систему вычетов по модулю m , то ax тоже пробегает приведенную систему вычетов по модулю m . (Доказательство очевидно как в утверждении 2 пункт 2).

Обратный элемент.

Говорят, что элемент b называется обратным к a по модулю m , если a∙b ≡1(mod m ), и пишут b a –1 (mod m ).

Вообще, классическая теория чисел не нуждается в таком понятии как обратный элемент, в чем можно убедиться, ознакомившись, например, с . Однако криптология использует системы вычетов как в теоретико-числовом, так и в алгебраическом аспекте, а потому, для удобства изложения алгебраических основ криптологии, мы вводим понятие обратного элемента.

Возникает вопрос – для всех ли элементов по данному модулю m существует обратный (по умножению), и если для каких-то элементов обратный существует, как его найти?

Для ответа на этот вопрос воспользуемся расширенным алгоритмом Евклида. Рассмотрим сначала взаимно простые число a и модуль m . Тогда, очевидно, (a ,m )=1. Расширенный алгоритм Евклида позволяет получить числа x и y , такие, что ax+my= (a ,m ), или, что то же самое, ax+my =1. Из последнего выражения получаем сравнение ax+my ≡1(mod m ). Поскольку my ≡0(mod m ), то ax ≡1(mod m ), а значит полученное с помощью расширенного алгоритма Евклида число x как раз и есть искомый обратный элемент к числу a по модулю m .



Пример.

a =5, m =7. Требуется найти a -1 mod m .

Воспользуемся расширенным алгоритмом Евклида.

Обратный ход:

1=5–2∙2=5–(7–5∙1)∙2=5∙3–7∙2.

x =3, y =–2.

5 -1 ≡3(mod 7)

Проверка: 5∙3=15. 15≡1(mod 7).

Действительно, 3 является обратным элементом к 5 по модулю 7.

Итак, конструктивным образом убедились в том, что для чисел, взаимно простых с модулем, существует обратный по этому модулю. А существуют ли обратные элементы для чисел, не являющихся с модулем взаимно простыми?

Пусть (a ,m )=d ≠1. Тогда a и m представимы в виде a =d a 1 , m =d m 1 . Допустим, что для a существует обратный элемент по модулю m, то есть b : a b ≡1(modm ). Тогда a b= m k +1. Или, что то же самое, d a 1 ∙b= d m 1 ∙k +1. Но тогда по теореме 2 из §1 п.1, в силу того, что и левая часть данного уравнения, и первое слагаемое в правой части делятся на d , то d \1, а это не так, поскольку d ≠1. Пришли к противоречию, следовательно предположение о существовании обратного элемента неверно.

Итак, мы только что доказали

Теорему обратимости

a -1 (mod m ) (a , m ) = 1.

Суммируя все рассуждения этого пункта, можем сказать, что обратимыми являются только взаимно простые с модулем числа, и найти обратные для них можно с помощью расширенного алгоритма Евклида.

часть полной системы вычетов (См. Полная система вычетов), состоящая из чисел взаимно простых с модулем m. П. с. в. содержит φ(m ) чисел [φ(m ) - число чисел, взаимно простых с m и меньших m ]. Всякие φ(m ) чисел, не сравнимые по модулю m и взаимно простые с ним, образуют П. с. в. по этому модулю.

  • - см. Приведённая масса...

    Физическая энциклопедия

  • - условная характеристика распределения масс в движущейся механич. или смешанной системе, зависящая от физ. параметров системы и от закона её движения...

    Физическая энциклопедия

  • - по модулю т - любой набор из тнесравнимых между собой по модулю тцелых чисел. Обычно в качестве П. с. в. по модулю тберутся наименьшие неотрицательные вычеты 0, 1, . . ...

    Математическая энциклопедия

  • - сумма полезной площади квартирного жилого дома, а также площадей лоджий, веранд, балконов с соответствующими понижающими коэффициентами - обща приведена площ - přepočtená užitková plocha - Gesamtfläche - fajlagos alapterület - хөрвүүлсэн...

    Строительный словарь

  • - См. Коэффициент пористости пород...
  • - отношение объема пор горной породы к объему скелета горной породы, выражаемое обычно в долях единицы...

    Словарь по гидрогеологии и инженерной геологии

  • - см. коэффициент пористости...

    Толковый словарь по почвоведению

  • - то же, что базовая деталь...
  • - условная хар-ка распределения масс в системе движущихся тел, вводимая в механике для упрощения ур-ний движения системы...

    Большой энциклопедический политехнический словарь

  • - Налог, взыскиваемый у источника с дивидендов или другого дохода, получаемого нерезидентом страны...

    Финансовый словарь

  • - Налог, взыскиваемый у источника с дивидендов или другого дохода, получаемого не резидентом страны...

    Словарь бизнес терминов

  • - по модулю m, любая совокупность целых чисел, содержащая по одному числу из каждого класса чисел по модулю m . В качестве П. с. в. чаще всего применяется система наименьших положительных вычетов 0, 1, 2,.....
  • - условная характеристика распределения масс в движущейся механической или смешанной системе, зависящая от физических параметров системы и от закона её движения...

    Большая Советская энциклопедия

  • - ПРИВЕДЕННАЯ масса - условная характеристика распределения масс в движущейся механической или смешанной системе, зависящая от физических параметров системы и от закона ее движения...

    Большой энциклопедический словарь

  • - общий, весь, совокупный,...

    Словарь синонимов

  • - прил., кол-во синонимов: 1 чистый...

    Словарь синонимов

"Приведённая система вычетов" в книгах

Какова приведенная стоимость ключевой сферы компетенции?

Из книги Невесомое богатство. Определите стоимость вашей компании в экономике нематериальных активов автора Тиссен Рене

Какова приведенная стоимость ключевой сферы компетенции? Исходя из рассмотренного выше, мы можем сказать, что приведенная стоимость ключевой сферы компетенции рассчитывается перемножением всех показателей за определенное время с учетом затрат на привлечение

Чистая приведенная стоимость (NPV)

Из книги МВА за 10 дней. Самое важное из программ ведущих бизнес-школ мира автора Силбигер Стивен

Чистая приведенная стоимость (NPV) Анализ приведенной стоимости (NPV) помогает посчитать, сколько работнику нужно вложить, чтобы через 30 лет получать достойную пенсию, но этот анализ бесполезен при оценке текущих инвестиций и проектов. Инвестиции необходимо оценивать в

УЧЕТ УДЕРЖАНИЙ И ВЫЧЕТОВ ИЗ ЗАРАБОТНОЙ ПЛАТЫ

Из книги Бухгалтерский учет автора Мельников Илья

УЧЕТ УДЕРЖАНИЙ И ВЫЧЕТОВ ИЗ ЗАРАБОТНОЙ ПЛАТЫ В соответствии с законодательством из заработной платы работников производятся следующие удержания:– подоходный налог (государственный налог, объект обложения – заработную плата);– погашение задолженности по ранее

10.6. Учет удержаний и вычетов из заработной платы

Из книги Бухгалтерский учет в сельском хозяйстве автора Бычкова Светлана Михайловна

10.6. Учет удержаний и вычетов из заработной платы Из заработной платы работников предприятия производятся определенные удержания, которые подразделяются следующим образом: обязательные удержания (налог на доходы физических лиц, удержания по исполнительным листам);

Из книги Нематериальные активы: бухгалтерский и налоговый учет автора Захарьин В Р

<...>

4.1. Общие вопросы предоставления социальных налоговых вычетов

автора Макурова Татьяна

4.1. Общие вопросы предоставления социальных налоговых вычетов Социальные налоговые вычеты (ст.219 НК) так же, как и имущественный вычет на приобретение жилья, означают уменьшение налогооблагаемой базы на величину произведенных социальных расходов с учетом законодательно

4.3. Особенности предоставления образовательных вычетов

Из книги Самоучитель по налогам на доходы физлиц автора Макурова Татьяна

4.3. Особенности предоставления образовательных вычетов 142) Какие расходы могут быть приняты к вычету на обучение? Каковы лимиты образовательных вычетов?К социальному налоговому вычету на образование принимаются: расходы в сумме, уплаченной налогоплательщиком в

3.4. Количественная оценка и периодичность возникновения и применения налоговых вычетов

Из книги Налоговая нагрузка предприятия: анализ, расчет, управление автора Чипуренко Елена Викторовна

3.4. Количественная оценка и периодичность возникновения и применения налоговых вычетов 3.4.1. НДС как потенциальный налоговый вычет При исчислении НДС суммы налоговых вычетов определяются только в соответствии с данными регистров налогового учета – книг покупок. При

Полная система вычетов

Из книги Большая Советская Энциклопедия (ПО) автора БСЭ

Приведённая масса

БСЭ

Приведённая система вычетов

Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

88. Структурная и приведённая формы системы одновременных уравнений. Идентификация модели

Из книги Ответы на экзаменационные билеты по эконометрике автора Яковлева Ангелина Витальевна

88. Структурная и приведённая формы системы одновременных уравнений. Идентификация модели Структурными уравнениями называются уравнения, из которых состоит исходная система одновременных уравнений. В данном случае система имеет структурную форму.Структурная форма

Из книги Новое в Налоговом кодексе: комментарий к изменениям, вступившим в силу в 2008 году автора Зрелов Александр Павлович

Статья 172. Порядок применения налоговых вычетов Комментарий к статье 172В тексте абз.1 п.2 комментируемой статьи отменено условие, предписывающее производить исчисления суммы налога исходя из балансовой стоимости имущества (с учетом его переоценок и амортизации, которые

автора Автор неизвестен

Статья 172. Порядок применения налоговых вычетов 1. Налоговые вычеты, предусмотренные статьей 171 настоящего Кодекса, производятся на основании счетов-фактур, выставленных продавцами при приобретении налогоплательщиком товаров (работ, услуг), имущественных прав,

Из книги Налоговый кодекс Российской Федерации. Части первая и вторая. Текст с изменениями и дополнениями на 1 октября 2009 г. автора Автор неизвестен

Статья 201. Порядок применения налоговых вычетов 1. Налоговые вычеты, предусмотренные пунктами 1 – 4 статьи 200 настоящего Кодекса, производятся на основании расчетных документов и счетов-фактур, выставленных продавцами при приобретении налогоплательщиком подакцизных

В предыдущем пункте было отмечено, что отношение  m сравнимости по произвольному модулю m есть отношение эквивалентности на множестве целых чисел. Это отношение эквивалентности индуцирует разбиение множества целых чисел на классы эквивалентных между собой элементов, т.е. в один класс объединяются числа, дающие при делении на m одинаковые остатки. Число классов эквивалентности  m (знатоки скажут – "индекс эквивалентности  m ") в точности равно m .

Определение. Любое число из класса эквивалентности  m будем называть вычетом по модулю m . Совокупность вычетов, взятых по одному из каждого класса эквивалентности  m , называется полной системой вычетов по модулю m (в полной системе вычетов, таким образом, всего m штук чисел). Непосредственно сами остатки при делении на m называются наименьшими неотрицательными вычетами и, конечно, образуют полную систему вычетов по модулю m . Вычет ρ называется абсолютно наименьшим, если ⎪ρ ⎪ наименьший среди модулей вычетов данного класса.

Пример : Пусть m = 5. Тогда:

0, 1, 2, 3, 4 - наименьшие неотрицательные вычеты;

2, -1, 0, 1, 2 - абсолютно наименьшие вычеты.

Обе приведенные совокупности чисел образуют полные системы вычетов по модулю 5.

Лемма 1 . 1) Любые m штук попарно не сравнимых по модулю m чисел образуют полную систему вычетов по модулю m .

2) Если а и m взаимно просты, а x пробегает полную систему вычетов по модулю m , то значения линейной формы а x + b , где b – любое целое число, тоже пробегают полную систему вычетов по модулю m .

Доказательство. Утверждение 1) – очевидно. Докажем утверждение 2) Чисел а x +b ровно m штук. Покажем, что они между собой не сравнимы по модулю m . Ну пусть для некоторых различных x 1 и x 2 из полной системы вычетов оказалось, что ax 1 + b ax 2 + b (mod m). Тогда, по свойствам сравнений из предыдущего пункта, получаем:

ax 1 ≡ ax 2 (mod m )

x 1 ≡ x 2 (mod m )

– противоречие с тем, что x 1 и x 2 различны и взяты из полной системы вычетов.

Поскольку все числа из данного класса эквивалентности  m получаются из одного числа данного класса прибавлением числа, кратного m , то все числа из данного класса имеют с модулем m один и тот же наибольший общий делитель. По некоторым соображениям, повышенный интерес представляют те вычеты, которые имеют с модулем m наибольший общий делитель, равный единице, т.е. вычеты, которые взаимно просты с модулем.

Определение. Приведенной системой вычетов по модулю m называется совокупность всех вычетов из полной системы, взаимно простых с модулем m .

Приведенную систему обычно выбирают из наименьших неотрицательных вычетов. Ясно, что приведенная система вычетов по модулю m содержит ϕ (m ) штук вычетов, где ϕ (m )– функция Эйлера – число чисел, меньших m и взаимно простых с m .

Функция Эйлера.

Функция Эйлера ϕ (a ) есть количество чисел из ряда 0, 1, 2,..., a –1, взаимно простых с a .

Лемма. Пусть

Т
огда:

в частности, φ(p α) = p α –p α -1 , φ(p ) = p –1.

Пример . Пусть m = 42. Тогда приведенная система вычетов суть:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.

Лемма 2. 1) Любые ϕ (m ) чисел, попарно не сравнимые по модулю m и взаимно простые с модулем, образуют приведенную систему вычетов по модулю m .

2) Если d (a , m ) = 1 и x пробегает приведенную систему вычетов по модулю m , то а x так же пробегает приведенную систему вычетов по модулю m .

Доказательство . Утверждение 1) – очевидно. Докажем утверждение 2). Числа а x попарно несравнимы (это доказывается так же, как в лемме 1 этого пункта), их ровно ϕ (m ) штук. Ясно также, что все они взаимно просты с модулем, ибо d (a , m )=1, d (x ,m )=1 ⇒ d (ax , m )=1. Значит, числа а x образуют приведенную систему вычетов.

Лемма 3. Пусть m 1 , m 2 , ..., m k – попарно взаимно просты и m 1 m 2 ...m k =M 1 m 1 =M 2 m 2 =...=M k m k , где M j =m 1 ...m j -1 m j +1 ...m k

1) Если x 1 , x 2 , ..., x k пробегают полные системы вычетов по модулям m 1 , m 2 , ..., m k M 1 x 1 +M 2 x 2 + ...+M k x k пробегают полную систему вычетов по модулю m= m 1 m 2 ...m k .

2) Если ξ 1 , ξ 2 , ..., ξ k пробегают приведенные системы вычетов по модулям m 1 , m 2 , ..., m k соответственно, то значения линейной формы M 1 ξ 1 +M 2 ξ 2 + ...+M k ξ k пробегают приведенную систему вычетов по модулю m= m 1 m 2 ...m k .

Лемма 4. Пусть x 1 , x 2 , ..., x k , x пробегают полные, а ξ 1 , ξ 2 ,..., ξ k , ξ – пробегают приведенные системы вычетов по модулям m 1 , m 2 ,...,m k и m=m 1 m 2 ...m k соответственно, где (m i m j )=1 при i j . Тогда дроби {x 1 /m 1 +x 2 /m 2 +...+x k /m k } совпадают с дробями {x/m} , а дроби { ξ 1 /m 1 + ξ 2 /m 2 +...+ ξ k /m k } совпадают с дробями { ξ/m} .

Обозначим через ε k k -ый корень m- ой степени из единицы:

Здесь k =0,1,...,m -1 – пробегает полную систему вычетов по модулю m .

Напомню, что сумма ε 0 + ε 1 +...+ ε m-1 всех корней m -ой степени из единицы равна нулю для любого m . Действительно, пусть ε 0 + ε 1 +...+ ε m-1 = a . Умножим эту сумму на ненулевое число ε 1 . Такое умножение геометрически в комплексной плоскости означает поворот правильного m -угольника, в вершинах которого расположены корни ε 0 + ε 1 +...+ ε m-1 , на ненулевой угол 2 π/m . Ясно, что при этом корень ε 0 перейдет в корень ε 1 , корень ε 1 перейдет в корень ε 2 , и т.д., а корень ε m-1 перейдет в корень ε 0 , т.е. сумма ε 0 + ε 1 +...+ ε m-1 не изменится. Имеем ε 1 a=a , откуда a=0 .

Теорема 1. Пусть m>0 – целое число, a Z , x пробегает полную систему вычетов по модулю m . Тогда, если а кратно m , то

в противном случае, при а не кратном m ,

Теорема 2. Пусть m>0 – целое число, ξ пробегает приведенную систему вычетов по модулю m . Тогда (сумма первообразных корней степени m ):

где μ(m ) – функция Мебиуса.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!