Единицы измерения физических величин. Физические величины Физ величины и их единицы измерения

Величина - это то, что можно измерить. Такие понятия, как длина, площадь, объём, масса, время, скорость и т. д. называют величинами. Величина является результатом измерения , она определяется числом, выраженным в определённых единицах. Единицы, в которых измеряется величина, называют единицами измерения .

Для обозначения величины пишут число, а рядом название единицы, в которой она измерялась. Например, 5 см, 10 кг, 12 км, 5 мин. Каждая величина имеет бесчисленное множество значений, например длина может быть равна: 1 см, 2 см, 3 см и т. д.

Одна и та же величина может быть выражена в разных единицах, например килограмм, грамм и тонна - это единицы измерения веса. Одна и та же величина в разных единицах выражается разными числами. Например, 5 см = 50 мм (длина), 1 ч = 60 мин (время), 2 кг = 2000 г (вес).

Измерить какую-нибудь величину - значит узнать, сколько раз в ней содержится другая величина того же рода, принятая за единицу измерения.

Например, мы хотим узнать точную длину какой-нибудь комнаты. Значит нам нужно измерить эту длину при помощи другой длины, которая нам хорошо известна, например при помощи метра. Для этого откладываем метр по длине комнаты столько раз, сколько можно. Если он уложится по длине комнаты ровно 7 раз, то длина её равна 7 метрам.

В результате измерения величины получается или именованное число , например 12 метров, или несколько именованных чисел, например 5 метров 7 сантиметров, совокупность которых называется составным именованным числом .

Меры

В каждом государстве правительство установило определённые единицы измерения для различных величин. Точно рассчитанная единица измерения, принятая в качестве образца, называется эталоном или образцовой единицей . Сделаны образцовые единицы метра, килограмма, сантиметра и т. п., по которым изготавливают единицы для обиходного употребления. Единицы, вошедшие в употребление и утверждённые государством, называются мерами .

Меры называются однородными , если они служат для измерения величин одного рода. Так, грамм и килограмм - меры однородные, так как они служат для измерения веса.

Единицы измерения

Ниже представлены единицы измерения различных величин, которые часто встречаются в задачах по математике:

Меры веса/массы

  • 1 тонна = 10 центнеров
  • 1 центнер = 100 килограмм
  • 1 килограмм = 1000 грамм
  • 1 грамм = 1000 миллиграмм
  • 1 километр = 1000 метров
  • 1 метр = 10 дециметров
  • 1 дециметр = 10 сантиметров
  • 1 сантиметр = 10 миллиметров

  • 1 кв. километр = 100 гектарам
  • 1 гектар = 10000 кв. метрам
  • 1 кв. метр = 10000 кв. сантиметров
  • 1 кв. сантиметр = 100 кв. миллиметрам
  • 1 куб. метр = 1000 куб. дециметров
  • 1 куб. дециметр = 1000 куб. сантиметров
  • 1 куб. сантиметр = 1000 куб. миллиметров

Рассмотрим ещё такую величину как литр . Для измерения вместимости сосудов употребляется литр. Литр является объёмом, который равен одному кубическому дециметру (1 литр = 1 куб. дециметру).

Меры времени

  • 1 век (столетие) = 100 годам
  • 1 год = 12 месяцам
  • 1 месяц = 30 суткам
  • 1 неделя = 7 суткам
  • 1 сутки = 24 часам
  • 1 час = 60 минутам
  • 1 минута = 60 секундам
  • 1 секунда = 1000 миллисекундам

Кроме того, используют такие единицы измерения времени, как квартал и декада.

  • квартал - 3 месяца
  • декада - 10 суток

Месяц принимается за 30 дней, если не требуется определить число и название месяца. Январь, март, май, июль, август, октябрь и декабрь - 31 день. Февраль в простом году - 28 дней, февраль в високосном году - 29 дней. Апрель, июнь, сентябрь, ноябрь - 30 дней.

Год представляет собой (приблизительно) то время, в течении которого Земля совершает полный оборот вокруг Солнца. Принято считать каждые три последовательных года по 365 дней, а следующий за ними четвёртый - в 366 дней. Год, содержащий в себе 366 дней, называется високосным , а годы, содержащие по 365 дней - простыми . К четвёртому году добавляют один лишний день по следующей причине. Время обращения Земли вокруг Солнца содержит в себе не ровно 365 суток, а 365 суток и 6 часов (приблизительно). Таким образом, простой год короче истинного года на 6 часов, а 4 простых года короче 4 истинных годов на 24 часа, т. е. на одни сутки. Поэтому к каждому четвёртому году добавляют одни сутки (29 февраля).

Об остальных видах величин вы узнаете по мере дальнейшего изучения различных наук.

Сокращённые наименования мер

Сокращённые наименования мер принято записывать без точки:

  • Километр - км
  • Метр - м
  • Дециметр - дм
  • Сантиметр - см
  • Миллиметр - мм

Меры веса/массы

  • тонна - т
  • центнер - ц
  • килограмм - кг
  • грамм - г
  • миллиграмм - мг

Меры площади (квадратные меры)

  • кв. километр - км 2
  • гектар - га
  • кв. метр - м 2
  • кв. сантиметр - см 2
  • кв. миллиметр - мм 2

  • куб. метр - м 3
  • куб. дециметр - дм 3
  • куб. сантиметр - см 3
  • куб. миллиметр - мм 3

Меры времени

  • век - в
  • год - г
  • месяц - м или мес
  • неделя - н или нед
  • сутки - с или д (день)
  • час - ч
  • минута - м
  • секунда - с
  • миллисекунда - мс

Мера вместимости сосудов

  • литр - л

Измерительные приборы

Для измерения различных величин используются специальные измерительные приборы. Одни из них очень просты и предназначены для простых измерений. К таким приборам можно отнести измерительную линейку, рулетку, измерительный цилиндр и др. Другие измерительные приборы более сложные. К таким приборам можно отнести секундомеры, термометры, электронные весы и др.

Измерительные приборы, как правило, имеют измерительную шкалу (или кратко шкалу). Это значит, что на приборе нанесены штриховые деления, и рядом с каждым штриховым делением написано соответствующее значение величины. Расстояние между двумя штрихами, возле которых написано значение величины, может быть дополнительно разделено ещё на несколько более малых делений, эти деления чаще всего не обозначены числами.

Определить, какому значению величины соответствует каждое самое малое деление, не трудно. Так, например, на рисунке ниже изображена измерительная линейка:

Цифрами 1, 2, 3, 4 и т. д. обозначены расстояния между штрихами, которые разделены на 10 одинаковых делений. Следовательно, каждое деление (расстояние между ближайшими штрихами) соответствует 1 мм. Эта величина называется ценой деления шкалы измерительного прибора.

Перед тем как приступить к измерению величины, следует определить цену деления шкалы используемого прибора.

Для того чтобы определить цену деления, необходимо:

  1. Найти два ближайших штриха шкалы, возле которых написаны значения величины.
  2. Вычесть из большего значения меньшее и полученное число разделить на число делений, находящихся между ними.

В качестве примера определим цену деления шкалы термометра, изображённого на рисунке слева.

Возьмём два штриха, около которых нанесены числовые значения измеряемой величины (температуры).

Например, штрихи с обозначениями 20 °С и 30 °С. Расстояние между этими штрихами разделено на 10 делений. Таким образом, цена каждого деления будет равна:

(30 °С - 20 °С) : 10 = 1 °С

Следовательно, термометр показывает 47 °С.

Измерять различные величины в повседневной жизни приходится постоянно каждому из нас. Например, чтобы прийти вовремя в школу или на работу, приходится измерять время, которое будет потрачено на дорогу. Метеорологи для предсказания погоды измеряют температуру, атмосферное давление, скорость ветра и т. д.

ИЗМЕРЕНИЯ

Современный этап научно-технического прогресса характеризуется интенсивным повышением интереса к измерениям. Возрастающий интерес к измерениям обуславливается тем, что они играют всё более значительную, а иногда определяющую роль в решении, как фундаментальных проблем познания, так и практических проблем научно-технического прогресса, социальных проблем, повышают эффективность всей общественно-полезной деятельности. Измерения являются основным процессом получения объективной информации о свойствах разнообразных материальных объектов, связанных с практической деятельностью человека. Например, о годности какой-либо детали по ее размерам мы можем судить только после измерений этих размеров.

Измерение – это процесс получения объективной информации, отражающей действительный, а не предполагаемый материальный, научно-технический потенциал общества, достигнутый уровень общественного производства и т.п. На информации, получаемой путём измерений, основываются решения органов управления экономическим развитием на всех уровнях.

Все предприятия, деятельность которых связана с разработкой, испытаниями, производством, контролем продукции, с эксплуатацией транспорта и средств связи, со здравоохранением и др., проводят неисчислимое количество измерений. На основе результатов измерений принимаются конкретные решения.

На схеме, представленной на рис. 1.1, показаны основные элементы, логически связанные между собой при измерениях.

Измерения основаны на сравнении одинаковых свойств материальных объектов. Для свойств, при количественном сравнении которых применяются физические методы, установлено единое обобщённое понятие – физическая величина.

По ГОСТ 16263 физическая величина – это свойство, общее в качественном отношении многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта. Индивидуальность в количественном отношении следует понимать в том смысле, что свойство может быть для одного объекта в определённое число раз больше или меньше, чем для другого.

К физическим величинам относятся: длина, масса, время, электрические величины (ток, напряжение и т.п.), давление, скорость движения и т.п.

Рис.1.1. Схема основных элементов, участвующих в измерениях

Но запах не является физической величиной, так как он устанавливается с помощью субъективных ощущений.

Определение “физической величины” можно подкрепить примером. Возьмём два объекта: подшипник качения бытового пылесоса и подшипник качения вагонных колёс. Качественные свойства у них одинаковые, а количественные разные. Так диаметр наружного кольца подшипника качения вагонных колёс во много раз больше аналогичного диаметра подшипника пылесоса. Аналогично можно судить и о количественном соотношении массы и других свойств. Но для этого необходимо знать значение физической величины , т.е. оценить физическую величину в виде некоторого числа принятых для неё единиц. Например, значение массы подшипника качения вагонных колёс 8 кг, радиус земного шара 6378 км, диаметр отверстия 0,5 мм.



ГОСТ 16263 приводит ещё ряд определений, связанных с понятием “физическая величина”.

Истинное значение физической величины – это значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта. Оно является пределом, к которому приближается значение физической величины с повышением точности измерений.

Определить экспериментально истинное значение физической величины невозможно, оно остаётся неизвестным экспериментатору. В связи с этим при необходимости (например, при проверке средств измерений) вместо истинного значения физической величины используют её действительное значение.

Действительное значение физической величины – это значение физической величины, найденное экспериментальным путём и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

При нахождении действительного значения физической величины поверка средств измерений должна осуществляться по образцовым мерам и приборам, погрешностями которых можно пренебречь.

При технических измерениях значение физической величины, найденное с допустимой погрешностью, принимается за действительное значение.

Основная физическая величина – это физическая величина, входящая в систему и условно принятая в качестве независимой от других величин этой системы. Например, в системе СИ основными физическими величинами, независимыми от других, являются длина l , масса m , время t и др.

Производная физическая величина – физическая величина, входящая в систему и определяемая через основные величины этой системы. Например, скорость v определяется в общем случае уравнением:

v=dl/dt , (1.1)

где l – расстояние; t – время.

Ещё пример. Механическая сила в этой же системе определяется уравнением:

F=m*a , (1.2)

где m – масса; a - ускорение, вызываемое действием силы F.

Мерой для количественного сравнения одинаковых свойств объектов служит единица физической величины – физическая величина, которой по определению присвоено числовое значение, равное единицы. Единицам физических величин присваивается полное и сокращённое символьное обозначение – размерность . Например, масса – килограмм (кг), время – секунда (с), длина – метр (м), сила – Ньютон (Н).

Приведённые выше определения физической величины и её значения позволяют определить измерение как нахождение значения физической величины опытным путём с помощью специальных технических средств (ГОСТ 16263).

Это определение справедливо как для простейших случаев, когда, прикладывая линейку с делениями к детали, сравнивают её размер с единицей длины, хранимой линейкой, или когда с помощью прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, так и для более сложных – при использовании измерительной системы (для измерения нескольких величин одновременно).

Для более полного раскрытия понятия “измерение” знания одной его сути недостаточно. Необходимо выявить ещё и те условия, соблюдение которых является обязательным при выполнении измерений. Эти условия можно сформулировать, исходя из метрологической практики, обобщив её требования, а также исходя из определения понятия “измеряемая физическая величина”:

измерения возможны при условии, если установлена качественная определённость свойства, позволяющая отличить его от других свойств (т.е. при выделении физической величины среди других);

определена единица для определения величины;

имеется возможность материализации (воспроизведения или хранения) единицы;

сохранение неизменённым размер единицы (в пределах установленной точности) минимум в течение срока проведения измерений.

Если нарушается хотя бы одно из этих условий, измерения невыполнимы. Приведённые условия могут служить основой, во-первых, при рассмотрении содержания понятия “измерение”, во-вторых, при проведении чёткой границы между измерением и другими видами количественных оценок. От термина “измерение” происходит термин “измерять”, который широко используется на практике. Однако нередко применяются неверные термины: “мерить”, ”обмерять”, ”замерять”, ”промерять”, не вписывающиеся в систему метрологических терминов.

В технической литературе, посвящённой измерениям или средствам измерений, иногда можно прочесть об измерении процессов или зависимостей . Процесс, как объект измерить нельзя. Измеряют физические величины, их характеризующие. Например, нельзя сказать: “измерить деталь”. Следует уточнить, какие именно физические величины, свойственные детали, подлежат измерению (длина, диаметр, масса, твёрдость и др.). Это же относится и к процессам, включая быстродействующие, а также к зависимостям между физическими величинами.

Так, при нахождении зависимости уменьшения длины тела от изменения температуры измеряемыми величинами будут приращение температуры и удлинение тела, по значениям которых вычисляется указанная зависимость.

Эти вычисления можно осуществлять при помощи ЭВМ, сопряжённых со средством измерений, однако это не означает, что измеряется зависимость (она вычисляется). При использовании так называемых средств статистических измерений (в быстропротекающих процессах) допускаются такие, например, выражения, как: “измерение среднеквадратического значения напряжения случайного процесса”, “измерение плотности распределения вероятности” и др.

Следует отметить, что не все физические величины могут быть воспроизведены с заданными размерами и непосредственно сравнимы с себе подобными. К таким величинам относятся, например, температура, твёрдость материалов и т.п. В этом случае находит применение метод натуральных (реперных) шкал, заключающийся в следующем. Предметы и явления, обладающие некоторыми однородными свойствами, располагают в натуральный последовательный ряд так, что у каждого предмета в этом ряду данного свойства будет больше, чем у предыдущего и меньше, чем у последующего. Далее выбирают несколько членов ряда и принимают их за образцы. Выбранные образцы формируют шкалу (лестницу) реперных точек для сопоставления предметов или явлений поданному свойству. Примерами реперных шкал являются минералогическая шкала твёрдости, шкала силы ветра в “баллах Бофорта”.

Существенный недостаток таких шкал состоит в произвольном размере интервалов между реперными точками и невозможность уточнения размера физической величины внутри интервала.

В связи с этим в измерительной технике отдаётся предпочтение функциональным шкалам, при построении которых используется функциональная зависимость какой-либо физической величины, удобной для непосредственного измерения, от измеряемой физической величины. Чаще всего эта зависимость имеет линейный характер. В качестве примера можно привести температурную шкалу, например, Цельсия. При построении шкалы используются реперные точки, которым приписаны определённые значения температур, например, точка таяния льда (0,000 о С), точка кипения воды (100,000 о С) и т.п. В интервалах между температурами реперных точек осуществляется интерполяция с помощью тех или иных преобразователей температуры – ртутных термометров, термопар, платиновых термометров сопротивления. При этом измеряемая температура преобразуется в перемещение конца ртутного столбика, в эдс термопары или в сопротивление платинового резистора.

Специалист в области метрологии М.Ф. Маликов для решения метрологических проблем предложил разделить все измерения на две группы, назвав их “лабораторные” и “технические”.

К лабораторным относятся такие измерения, погрешности получаемых результатов которых оцениваются в процессе самих измерений, причём каждому результату соответствует своя оценка погрешности. К техническим М.Ф. Маликов отнёс такие измерения, возможные погрешности результатов которых заранее изучены и определены, так что в процессе самих измерений они уже не оцениваются.

Лабораторные – это измерения, проводимые, как правило, при фундаментальных исследованиях. Характерным для них является стремление обеспечить более высокую точность результатов измерений. Отсюда вытекают специфические особенности лабораторных измерений: желательно из используемых средств измерений извлечь всю точность, на которую они способны; желательно исключить (или уменьшить) случайные погрешности каждого результата измерений, для чего проводят многократные измерения, результаты которых по выбранной методике математически обрабатывают; желательно исключить (или уменьшить) систематические погрешности каждого результата измерений, для чего используют специальные способы измерений. В связи с этим, основным признаком лабораторных измерений является оценивание погрешности каждого отдельного результата измерений в процессе самих измерений.

Технические измерения – это основная масса измерений, проводимых в народном хозяйстве. Отличительным признаком технических измерения является то, что они проводятся по специально разработанным, предварительно изученным и аттестованным методикам выполнения измерений.

В дальнейшем будем касаться только технических измерений и под термином “измерения” будем понимать “технические измерения”.

Электрическим током (I) называется направленное движение электрических зарядов (ионов - в электролитах, электронов проводимости в металлах).
Необходимым условием для протекания электрического тока является замкнутость электрической цепи.

Электрический ток измеряется в амперах (А) .

Производными единицами измерения тока являются:
1 килоампер (кА) = 1000 А;
1 миллиампер (мА) 0,001 А;
1 микроампер (мкА) = 0,000001 А.

Человек начинает ощущать проходящий через его тело ток в 0,005 А. Ток больше 0,05 А опасен для жизни человека.

Электрическим напряжением (U) называется разность потенциалов между двумя точками электрического поля.

Единицей разности электрических потенциалов является вольт (В).
1 В = (1 Вт) : (1 А).

Производными единицами измерения напряжения являются:

1 киловольт (кВ) = 1000 В;
1 милливольт (мВ) = 0,001 В;
1 микровольт (мкВ) = 0,00000 1 В.

Сопротивлением участка электрической цепи называется величина, зависящая от материала проводника, его длины и поперечного сечения.

Электрическое сопротивление измеряется в омах (Ом).
1 Ом = (1 В) : (1 А).

Производными единицами измерения сопротивления являются:

1 килоОм (кОм) = 1000 Ом;
1 мегаОм (МОм) = 1 000 000 Ом;
1 миллиОм (мОм) = 0,001 Ом;
1 микроОм (мкОм) = 0,00000 1 Ом.

Электрическое сопротивление тела человека в зависимости от ряда условий колеблется от 2000 до 10 000 Ом.

Удельным электрическим сопротивлением (ρ) называется сопротивление проволоки длиной 1 м и сечением 1 мм2 при температуре 20 °С.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью (γ).

Мощностью (Р) называется величина, характеризующая скорость, с которой происходит преобразование энергии, или скорость, с которой совершается работа.
Мощностью генератора называется величина, характеризующая скорость, с которой механическая или другая энергия преобразуется в генераторе в электрическую.
Мощностью потребителя называется величина, характеризующая скорость, с которой происходит преобразование электрической энергии в отдельных участках цепи в другие полезные виды энергии.

Системной единицей мощности в СИ является ватт (Вт). Он равен мощности, при которой за 1 секунду выполняется работа в 1 джоуль:

1Вт = 1Дж/1сек

Производными единицами измерения электрической мощности являются:

1 киловатт (кВт) = 1000 Вт;
1 мегаватт (МВт) = 1000 кВт = 1 000 000 Вт;
1 милливатт (мВт) = 0,001 Вт; о1i
1 лошадиная сила (л. с.) = 736 Вт = 0,736 кВт.

Единицами измерения электрической энергии являются:

1 ватт-секунда (Вт сек) = 1 Дж = (1 Н) (1 м);
1 киловатт-час (кВт ч) = 3,б 106 Вт сек.

Пример. Ток, потребляемый электродвигателем, присоединенным к сети 220 В, составлял 10 А в течение 15 минут. Определить энергию, потребленную двигателем.
Вт*сек, или, разделив эту величину на 1000 и 3600, получим энергию в киловатт-часах:

W = 1980000/(1000*3600) = 0,55кВт*ч

Таблица 1. Электрические величины и единицы

Мощность, тепловой поток

Способ задания значений температуры - температурная шкала. Известно несколько температурных шкал.

  • Шкала Кельвина (по имени английского физика У. Томсона, лорда Кельвина).
    Обозначение единицы: К (не «градус Кельвина» и не °К).
    1 К = 1/273,16 - часть термодинамической температуры тройной точки воды, соответствующей термодинамическому равновесию системы, состоящей изо льда, воды и пара.
  • Шкала Цельсия (по имени шведского астронома и физика А. Цельсия).
    Обозначение единицы: °С.
    В этой шкале температура таяния льда при нормальном давлении принята равной 0°С, температура кипения воды - 100°С.
    Шкалы Кельвина и Цельсия связаны уравнением: t (°C) = Т (К) - 273,15.
  • Шкала Фаренгейта (Д. Г. Фаренгейт - немецкий физик).
    Обозначение единицы: °F . Применяется широко, в частности, в США.
    Шкала Фаренгейта и шкала Цельсия связаны: t (°F) = 1,8 · t (°C) + 32°C. По абсолютному значению 1 (°F) = 1 (°C).
  • Шкала Реомюра (по имени французского физика Р.А. Реомюра).
    Обозначение: °R и °r .
    Эта шкала почти вышла из употребления.
    Соотношение с градусом Цельсия: t (°R) = 0,8 · t (°C).
  • Шкала Рэнкина (Ранкина) - по имени шотландского инженера и физика У. Дж. Ранкина.
    Обозначение: °R (иногда: °Rank) .
    Шкала также применяется в США.
    Температура по шкале Рэнкина соотносится с температурой по шкале Кельвина: t (°R) = 9/5 · Т (К).

Основные температурные показатели в единицах измерения разных шкал:

Единица измерения в СИ - метр (м).

  • Внесистемная единица: Ангстрем (Å). 1Å = 1·10-10 м .
  • Дюйм (от голл. duim - большой палец); inch; in; ´´; 1´ = 25,4 мм .
  • Хэнд (англ. hand - рука); 1 hand = 101,6 мм .
  • Линк (англ. link - звено); 1 li = 201,168 мм .
  • Спэн (англ. span - пролет, размах); 1 span = 228,6 мм .
  • Фут (англ. foot - нога, fееt - футы); 1 ft = 304,8 мм .
  • Ярд (англ. yard - двор, загон); 1 yd = 914,4 мм .
  • Фатом, фэсом (англ. fathom - мера длины (= 6 ft), или мера объема древесины (= 216 ft 3), или горная мера площади (= 36 ft 2), или морская сажень (Ft)); fath или fth, или Ft, или ƒfm; 1 Ft = 1,8288 м .
  • Чейн (англ. chain - цепь); 1 ch = 66 ft = 22 yd = = 20,117 м .
  • Фарлонг (англ. furlong) - 1 fur = 220 yd = 1/8 мили .
  • Миля (англ. mile; международная). 1 ml (mi, MI) = 5280 ft = 1760 yd = 1609,344 м .

Единица измерения в СИ - м 2 .

  • Квадратный фут; 1 ft 2 (также sq ft) = 929,03 см 2 .
  • Квадратный дюйм; 1 in 2 (sq in) = 645,16 мм 2 .
  • Квадратный фатом (фэсом); 1 fath 2 (ft 2 ; Ft 2 ; sq Ft) = 3,34451 м 2 .
  • Квадратный ярд; 1 yd 2 (sq yd)= 0,836127 м 2 .

Sq (square) - квадратный.

Единица измерения в СИ - м 3 .

  • Кубический фут; 1 ft 3 (также cu ft) = 28,3169 дм 3 .
  • Кубический фатом; 1 fath 3 (fth 3 ; Ft 3 ; cu Ft) = 6,11644 м 3 .
  • Кубический ярд; 1 yd 3 (cu yd) = 0,764555 м 3 .
  • Кубический дюйм; 1 in 3 (cu in) = 16,3871 см 3 .
  • Бушель (Великобритания); 1 bu (uk, также UK) = 36,3687 дм 3 .
  • Бушель (США); 1 bu (us, также US) = 35,2391 дм 3 .
  • Галлон (Великобритания); 1 gal (uk, также UK) = 4,54609 дм 3 .
  • Галлон жидкостный (США); 1 gal (us, также US) = 3,78541 дм 3 .
  • Галлон сухой (США); 1 gal dry (us, также US) = 4,40488 дм 3 .
  • Джилл (gill); 1 gi = 0,12 л (США), 0,14 л (Великобритания) .
  • Баррель (США); 1bbl = 0,16 м 3 .

UK - United Kingdom - Соединенное Королевство (Великобритания); US - United Stats (США).


Удельный объем

Единица измерения в СИ - м 3 /кг.

  • Фут 3 /фунт; 1 ft3 / lb = 62,428 дм 3 /кг .

Единица измерения в СИ - кг.

  • Фунт (торговый) (англ. libra, pound - взвешива- ние, фунт); 1 lb = 453,592 г ; lbs - фунты. В системе старых русских мер 1 фунт = 409,512 г .
  • Гран (англ. grain - зерно, крупина, дробина); 1 gr = 64,799 мг .
  • Стоун (англ. stone - камень); 1 st = 14 lb = 6,350 кг .

Плотность, в т.ч. насыпная

Единица измерения в СИ - кг/м 3 .

  • Фунт/фут 3 ; 1 lb / ft 3 = 16,0185 кг/м 3 .


Линейная плотность

Единица измерения в СИ - кг/м.

  • Фунт/фут; 1 lb / ft = 1,48816 кг/м
  • Фунт/ярд; 1 lb / yd = 0,496055 кг/м


Поверхностная плотность

Единица измерения в СИ - кг/м 2 .

  • Фунт/фут 2 ; 1 lb / ft 2 (также lb / sq ft - pound per square foot) = 4,88249 кг/м 2 .

Линейная скорость

Единица измерения в СИ - м/с.

  • Фут/ч; 1 ft / h = 0,3048 м/ч .
  • Фут/с; 1 ft / s = 0,3048 м/с .

Единица измерения в СИ - м/с 2 .

  • Фут/с 2 ; 1 ft / s 2 = 0,3048 м/с 2 .

Массовый расход

Единица измерения в СИ - кг/с.

  • Фунт/ч; 1 lb / h = 0,453592 кг/ч .
  • Фунт/с; 1 lb / s = 0,453592 кг/с .


Объемный расход

Единица измерения в СИ - м 3 /с.

  • Фут 3 /мин; 1 ft 3 / min = 28,3168 дм 3 /мин .
  • Ярд 3 /мин; 1 yd 3 / min = 0,764555 дм 3 /мин .
  • Галлон/мин; 1 gal/ min (также GPM - gallon per min) = 3,78541 дм 3 /мин .


Удельный объемный расход

  • GPM/(sq·ft) - gallon (G) per (P) minute (M)/(square (sq) · foot (ft)) - галлон в минуту на квадратный фут;
    1 GPM/(sq · ft) = 2445 л/(м 2 · ч) · 1 л/(м 2 · ч) = 10 -3 м/ч.
  • gpd - gallons per day - галлоны в день (сут); 1 gpd = 0,1577 дм 3 /ч.
  • gpm - gallons per minute - галлоны в минуту; 1 gpm = 0,0026 дм 3 /мин.
  • gps - gallons per second - галлоны в секунду; 1 gps = 438 · 10 -6 дм 3 /с.


Расход сорбата (например, Cl 2) при фильтровании через слой сорбента (например активного угля)

  • Gals/cu ft (gal/ft 3) - gallons/cubic foot (галлоны на кубический фут); 1 Gals/cu ft = 0,13365 дм 3 на 1 дм 3 сорбента.

Единица измерения в СИ - Н.

  • Фунт-сила; 1 lbf - 4,44822 Н. (Аналог названия единицы измерения: килограмм-сила, кгс. 1 кгс = = 9,80665 · Н (точно). 1 lbf = 0,453592 (кг) · 9,80665 Н = = 4,44822 Н · 1Н=1 кг · м/с 2
  • Паундаль (англ.: poundal); 1 pdl = 0,138255 Н. (Паундаль - сила, сообщающая массе в один фунт ускорение в 1 фут/с 2 , lb · ft/ с 2 .)


Удельный вес

Единица измерения в СИ - Н/м 3 .

  • Фунт-сила/фут 3 ; 1 lbf/ft 3 = 157,087 Н/м 3 .
  • Паундаль/фут 3 ; 1 pdl/ft 3 = 4,87985 Н/м 3 .

Единица измерения в СИ - Па , кратные единицы: МПа, кПа .

Cпециалисты в своей работе продолжают применять устаревшие, отмененные или ранее факультативно допускаемые единицы измерения давления: кгс/см 2 ; бар; атм . (физическая атмосфера); ат (техническая атмосфера); ата; ати; м вод. ст.; мм рт. ст; торр .

Используются понятия: «абсолютное давление», «избыточное давление». Встречаются ошибки при переводе некоторых единиц измерения давления в Па и в его кратные единицы. Нужно учитывать, что 1 кгс/см 2 равен 98066,5 Па (точно), то есть для небольших (примерно до 14 кгс/см 2) давлений с достаточной для работы точностью можно принять: 1 Па = 1 кг/(м · с 2) = 1 Н/м 2 . 1 кгс/см 2 ≈ 105 Па = 0,1 МПа . Но уже при средних и высоких давлениях: 24 кгс/см 2 ≈ 23,5 · 105 Па = 2,35 МПа; 40 кгс/см 2 ≈ 39 · 105 Па = 3,9 МПа; 100 кгс/см 2 ≈ 98 · 105 Па = 9,8 МПа и т.д.

Соотношения:

  • 1 атм (физическая) ≈ 101325 Па ≈ 1,013 · 105 Па ≈ ≈ 0,1 МПа.
  • 1 ат (техническая) = 1 кгс/см 2 = 980066,5 Па ≈ ≈ 105 Па ≈ 0,09806 МПа ≈ 0,1 МПа.
  • 0,1 МПа ≈ 760 мм рт. ст. ≈ 10 м вод. ст. ≈ 1 бар.
  • 1 Торр (тор, tor) = 1 мм рт. ст.
  • Фунт-сила/дюйм 2 ; 1 lbf/in 2 = 6,89476 кПа (см. ниже: PSI).
  • Фунт-сила/фут 2 ; 1 lbf/ft 2 = 47,8803 Па.
  • Фунт-сила/ярд 2 ; 1 lbf/yd 2 = 5,32003 Па.
  • Паундаль/фут 2 ; 1 pdl/ft 2 = 1,48816 Па.
  • Фут водяного столба; 1 ft Н 2 О = 2,98907 кПа.
  • Дюйм водяного столба; 1 in Н 2 О = 249,089 Па.
  • Дюйм ртутного столба; 1 in Hg = 3,38639 кПа.
  • PSI (также psi) - pounds (P) per square (S) inch (I) - фунты на квадратный дюйм; 1 PSI = 1 lbƒ/in 2 = 6,89476 кПа.

Иногда в литературе встречается обозначение единицы измерения давления lb/in 2 - в этой единице учтено не lbƒ (фунт-сила), а lb (фунт-масса). Поэтому в численном выражении 1 lb/ in 2 несколько отличается от 1 lbf/ in 2 , так как при определении 1 lbƒ учтено: g = 9,80665 м/с 2 (на широте Лондона). 1 lb/in 2 = 0,454592 кг/(2,54 см) 2 = 0,07046 кг/см 2 = 7,046 кПа. Расчет 1 lbƒ - см. выше. 1 lbf/in 2 = 4,44822 Н/(2,54 см) 2 = 4,44822 кг · м/ (2,54 · 0,01 м) 2 · с 2 = 6894,754 кг/ (м · с 2) = 6894,754 Па ≈ 6,895 кПа.

Для практических расчетов можно принять: 1 lbf/in 2 ≈ 1 lb/in 2 ≈ 7 кПа. Но, по сути, равенство неправомерно, как и 1 lbƒ = 1 lb, 1 кгс = 1 кг. PSIg (psig) - то же, что PSI, но указывает избыточное давление; PSIa (psia) - то же, что PSI, но акцентирует: давление абсолютное; а - absolute, g - gauge (мера, размер).


Напор воды

Единица измерения в СИ - м.

  • Напор в футах (feet-head); 1 ft hd = 0,3048 м


Потери давления во время фильтрования

  • PSI/ft - pounds (P) per square (S) inch (I)/foot (ft) - фунты на квадратный дюйм/фут; 1 PSI/ft = 22,62 кПа на 1 м фильтрующего слоя.

Единица измерения в СИ - Джоуль (по имени английского физика Дж. П. Джоуля).

  • 1 Дж - механическая работа силы 1 Н при перемещении тела на расстояние 1 м.
  • Ньютон (Н) - единица силы и веса в СИ; 1 Н ра вен силе, сообщающей телу массой 1 кг ускорение 1 м 2 /с в направлении действия силы. 1 Дж = 1 Н · м .

В теплотехнике продолжают применять отмененную единицу измерения количества теплоты - калорию (кал, cal).

  • 1 Дж (J) = 0,23885 кал. 1 кДж = 0,2388 ккал.
  • 1 lbf · ft (фунт-сила-фут) = 1,35582 Дж.
  • 1 pdl · ft (паундаль-фут) = 42,1401 мДж.
  • 1 Btu (британская единица теплоты) = 1,05506 кДж (1 кДж = 0,2388 ккал).
  • 1 Therm (терма - британская большая калория) = 1 · 10 -5 Btu.

МОЩНОСТЬ, ТЕПЛОВОЙ ПОТОК

Единица измерения в СИ - Ватт (Вт) - по имени английского изобретателя Дж. Уатта - механическая мощность, при которой за время 1 с совершается работа в 1 Дж, или тепловой поток, эквивалентный механической мощности в 1 Вт.

  • 1 Вт (W) = 1 Дж/с = 0,859985 ккал/ч (kcal / h).
  • 1 lbf · ft / s (фунт-сила-фут/с) = 1,33582 Вт.
  • 1 lbf · ft / min (фунт-сила-фут/мин) = 22,597 мВт.
  • 1 lbf · ft / h (фунт-сила-фут/ч) = 376,616 мкВт.
  • 1 pdl · ft / s (паундаль-фут/с) = 42,1401 мВт.
  • 1 hp (лошадиная сила британская / с) = 745,7 Вт.
  • 1 Btu/s (британская единица теплоты / с) = 1055,06 Вт.
  • 1 Btu/h (британская единица теплоты / ч) = 0,293067 Вт.


Поверхностная плотность теплового потока

Единица измерения в СИ - Вт/м 2 .

  • 1 Вт/м 2 (W/м 2) = 0,859985 ккал /(м 2 · ч) (kcal /(m 2 · h)).
  • 1 Btu/(ft 2 · ч) = 2,69 ккал/(м 2 · ч) = 3,1546 кВт/м 2 .

Динамическая вязкость (коэффициент вязкости), η.

Единица измерения в СИ - Па · с . 1 Па · с = 1 Н · с/м 2 ;
внесистемная единица - пуаз (П) . 1 П = 1 дин · с/м 2 = 0,1 Па·с.

  • Дина (dyn) - (от греч. dynamic - сила). 1 дин = 10 -5 Н = 1 г · см/с 2 = 1,02 · 10 -6 кгс.
  • 1 lbf · h / ft 2 (фунт-сила-ч/фут 2) = 172,369 кПа · с.
  • 1 lbf · s / ft 2 (фунт-сила-с/фут 2) = 47,8803 Па · с.
  • 1 pdl · s / ft 2 (паундаль-с/фут 2) = 1,48816 Па · с.
  • 1 slug /(ft · s) (слаг/(фут · с)) = 47,8803 Па · с. Slug (слаг) - техническая единица массы в английской системе мер.

Кинематическая вязкость, ν.

Единица измерения в СИ - м 2 /с ; Единица см 2 /с называется «Стокс» (по имени английского физика и математика Дж. Г. Стокса).

Кинематическая и динамическая вязкости связаны равенством: ν = η / ρ, где ρ - плотность, г/см 3 .

  • 1 м 2 /с = Стокс / 104.
  • 1 ft 2 /h (фут 2 /ч) = 25,8064 мм 2 /с.
  • 1 ft 2 /s (фут 2 /с) = 929,030 см 2 /с.

Единица напряженности магнитного поля в СИ - А/м (Ампер/метр). Ампер (А) - фамилия французского физика А.М. Ампера.

Ранее применялась единица Эрстед (Э) - по имени датского физика Х.К. Эрстеда.
1 А/м (A/m, At/m) = 0,0125663 Э (Ое)

Сопротивление раздавливанию и истиранию ми неральных фильтрующих материалов и вообще всех минералов и горных пород косвенно определяют по шкале Мооса (Ф. Моос - немецкий минералог).

В этой шкале числами в возрастающем порядке обозначают минералы, расположенные таким образом, чтобы каждый последующий был способен оставлять царапину на предыдущем. Крайние вещества в шкале Мооса: тальк (единица твердости - 1, самый мягкий) и алмаз (10, самый твердый).

  • Твердость 1-2,5 (чертятся ногтем): волсконкоит, вермикулит, галит, гипс, глауконит, графит, глинистые материалы, пиролюзит, тальк и др.
  • Твердость >2,5-4,5 (не чертятся ногтем, но чертятся стеклом): ангидрит, арагонит, барит, глауконит, доломит, кальцит, магнезит, мусковит, сидерит, халькопирит, шабазит и др.
  • Твердость >4,5-5,5 (не чертятся стеклом, но чертятся стальным ножом): апатит, вернадит, нефелин, пиролюзит, шабазит и др.
  • Твердость >5,5-7,0 (не чертятся стальным ножом, но чертятся кварцем): вернадит, гранат, ильменит, магнетит, пирит, полевые шпаты и др.
  • Твердость >7,0 (не чертятся кварцем): алмаз, гранаты, корунд и др.

Твердость минералов и горных пород можно определять также по шкале Кнупа (А. Кнуп - немецкий минералог). В этой шкале значения определяются по размеру отпечатка, оставляемого на минерале при вдавливании в его образец алмазной пирамиды под определенной нагрузкой.

Соотношения показателей по шкалам Мооса (М) и Кнупа (К):

Единица измерения в СИ - Бк (Беккерель, названный в честь французского физика А.А. Беккереля).

Бк (Bq) - единица активности нуклида в радиоактивном источнике (активность изотопа). 1 Бк равен активности нуклида, при которой за 1 с происходит один акт распада.

Концентрация радиоактивности: Бк/м 3 или Бк/л.

Активность - это число радиоактивных распадов в единицу времени. Активность, приходящаяся на единицу массы, называется удельной.

  • Кюри (Ku, Ci, Cu) - единица активности нуклида в радиоактивном источнике (активности изотопа). 1 Ku - это активность изотопа, в котором за 1 с происходит 3,7000 · 1010 актов распада. 1 Ku = 3,7000 · 1010 Бк.
  • Резерфорд (Рд, Rd) - устаревшая единица активности нуклидов (изотопов) в радиоактивных источниках, названная в честь английского физика Э. Резерфорда. 1 Рд = 1 · 106 Бк = 1/37000 Ки .


Доза излучения

Доза излучения - энергия ионизирующего излучения, поглощенная облучаемым веществом и рассчитанная на единицу его массы (поглощенная доза). Доза накапливается со временем облучения. Мощность дозы ≡ Доза/время.

Единица поглощенной дозы в СИ - Грэй (Гр, Gy) . Внесистемная единица - Рад (rad), соответствующая энергии излучения в 100 эрг, поглощенной веществом массой 1 г.

Эрг (erg - от греч.: ergon - работа) - единица работы и энергии в нерекомендуемой системе СГС.

  • 1 эрг = 10 -7 Дж = 1,02 · 10 -8 кгс · м = 2,39 · 10 -8 кал = 2,78 · 10 -14 кВт · ч.
  • 1 рад (rad) = 10 -2 Гр.
  • 1 рад (rad) = 100 эрг/г = 0,01 Гр = 2,388 · 10 -6 кал/г = 10 -2 Дж/кг.

Керма (сокр. англ.: kinetic energy released in matter) - кинетическая энергия, освобожденная в веществе, измеряется в грэях.

Эквивалентная доза определяется сравнением излучения нуклидов с рентгеновским излучением. Коэффициент качества излучения (К) показывает, во сколько раз радиационная опасность в случае хронического облучения человека (в сравнительно малых дозах) для данного вида излучения больше, чем в случае рентгеновского излучения при одинаковой поглощенной дозе. Для рентгеновского и γ-излучения К = 1. Для всех других видов излучений К устанавливается по радиобиологическим данным.

Дэкв = Дпогл · К.

Единица поглощенной дозы в СИ - 1 Зв (Зиверт) = 1 Дж/кг = 102 бэр.

  • БЭР (бэр, ri - до 1963 г. определялась как биологический эквивалент рентгена) - единица эквивалентной дозы ионизирующего излучения.
  • Рентген (Р, R) - единица измерения, экспозиционная доза рентгеновского и γ-излучения. 1 Р = 2,58 · 10 -4 Кл/кг .
  • Кулон (Кл) - единица в системе СИ, количество электричества, электрический заряд. 1 бэр = 0,01 Дж/кг .

Мощность эквивалентной дозы - Зв/с.

Проницаемость пористых сред (в том числе горных пород и минералов)

Дарси (Д) - по имени французского инженера А. Дарси, darsy (D) · 1 Д = 1,01972 мкм 2 .

1 Д - проницаемость такой пористой среды, при фильтрации через образец которой площадью 1 см 2 , толщиной 1 см и перепаде давления 0,1 МПа расход жидкости вязкостью 1 сП равен 1 см 3 /с.

Размеры частиц, зерен (гранул) фильтрующих материалов по СИ и стандартам других стран

В США, Канаде, Великобритании, Японии, Франции и Германии размеры зерен оценивают в мешах (англ. mesh - отверстие, ячейка, сеть), то есть по количеству (числу) отверстий, приходящихся на один дюйм самого мелкого сита, через которое могут пройти зерна. И эффективным диаметром зерен считается размер отверстия в мкм. В последние годы чаще применяются системы мешей США и Великобритании.

Соотношение между единицами измерения размеров зерен (гранул) фильтрующих материалов по СИ и стандартам других стран:

Массовая доля

Массовая доля показывает, какое массовое количество вещества содержится в 100 массовых частях раствора. Единицы измерения: доли единицы; проценты (%); промилле (‰); миллионные доли (млн -1).

Концентрация растворов и растворимость

Концентрацию раствора нужно отличать от растворимости - концентрации насыщенного раствора, которая выражается массовым количеством вещества в 100 массовых частях растворителя (например г/100 г).

Объемная концентрация

Объемная концентрация - это массовое количество растворенного вещества в определенном объеме раствора (например: мг/л, г/м 3).

Молярная концентрация

Молярная концентрация - количество молей данного вещества, растворенного в определенном объеме раствора (моль/м 3 , ммоль/л, мкмоль/мл).

Моляльная концентрация

Моляльная концентрация - число молей вещества, содержащегося в 1000 г растворителя (моль/кг).

Нормальный раствор

Нормальным называется раствор, содержащий в единице объема один эквивалент вещества, выраженный в массовых единицах: 1Н = 1 мг · экв/л = = 1 ммоль/л (с указанием эквивалента конкретного вещества).

Эквивалент

Эквивалент равен отношению части массы элемента (вещества), которая присоединяет или замещает в химическом соединении одну атомную массу водорода или половину атомной массы кислорода, к 1/12 массы углерода 12 . Так, эквивалент кислоты равен ее молекулярной массе, выраженной в граммах, деленной на основность (число ионов водорода); эквивалент основания - молекулярная масса, деленная на кислотность (число ионов водорода, а у неорганических оснований - деленная на число гидроксильных групп); эквивалент соли - молекулярная масса, деленная на сумму зарядов (валентность катионов или анионов); эквивалент соединения, участвующего в окислительно-восстановительных реакциях, - это частное от деления молекулярной массы соединения на число электронов, принятых (отданных) атомом восстанавливающегося (окисляющегося) элемента.

Соотношения между единицами измерения концентрации растворов
(Формулы перехода от одних выражений концентраций растворов к другим):

Принятые обозначения:

  • ρ - плотность раствора, г/см 3 ;
  • m - молекулярная масса растворенного вещества, г/моль;
  • Э - эквивалентная масса растворенного вещества, то есть количество вещества в граммах, взаимодействующее в данной реакции с одним грамматомом водорода или отвечающее переходу одного электрона.

Согласно ГОСТ 8.417-2002 единица количества вещества установлена: моль , кратные и дольные единицы (кмоль, ммоль, мкмоль ).

Единица измерения жесткости в СИ - ммоль/л; мкмоль/л.

В разных странах часто продолжают использовать отмененные единицы измерения жесткости воды:

  • Россия и страны СНГ - мг-экв/л, мкг-экв/л, г-экв/м 3 ;
  • Германия, Австрия, Дания и некоторые другие страны германской группы языков - 1 немецкий градус - (Н° - Harte - жесткость) ≡ 1 ч. СаО/100 тыс. ч. воды ≡ 10 мг СаО/л ≡ 7,14 мг MgO/л ≡ 17,9 мг СаСО 3 /л ≡ 28,9 мг Са(НСО 3) 2 /л ≡ 15,1 мг MgCO 3 /л ≡ 0,357 ммоль/л.
  • 1 французский градус ≡ 1 ч. СаСО 3 /100 тыс. ч. воды ≡ 10 мг СаСО 3 /л ≡ 5,2 мг СаО/л ≡ 0,2 ммоль/л.
  • 1 английский градус ≡ 1 гран/1галлон воды ≡ 1 ч. СаСО 3 /70 тыс. ч. воды ≡ 0,0648 г СаСО 3 /4,546 л ≡ 100 мг СаСО3 /7 л ≡ 7,42 мг СаО/л ≡ 0,285 ммоль/л. Иногда английский градус жесткости обозначают Clark.
  • 1 американский градус ≡ 1 ч. СаСО 3 /1 млн ч. воды ≡ 1 мг СаСО 3 /л ≡ 0,52 мг СаО/л ≡ 0,02 ммоль/л.

Здесь: ч. - часть; перевод градусов в соответствующие им количества СаО, MgO, CaCO 3 , Ca(HCO 3) 2 , MgCO 3 показан в качестве примеров в основном для немецких градусов; размерности градусов привязаны к кальцийсодержащим соединениям, так как в составе ионов жесткости кальций, как правило, составляет 75-95%, в редких случаях - 40-60%. Числа округлены в основном до второго знака после запятой.

Соотношение между единицами измерения жесткости воды:

1 ммоль/л = 1 мг · экв/л = 2,80°Н (немецкий градус) = 5,00 французского градуса = 3,51 английского градуса = 50,04 американского градуса.

Новая единица измерения жесткости воды - российский градус жесткости - °Ж, определяемый как концентрация щелочноземельного элемента (преимущественно Са 2+ и Mg 2+), численно равная ½ его моля в мг/дм 3 (г/м 3).

Единицы измерения щелочности - ммоль, мкмоль.

Единица измерения электропроводимости в СИ - мкСм/см.

Электропроводимость растворов и обратное ей электросопротивление характеризуют минерализацию растворов, но только - наличие ионов. При измерении электропроводимости не могут быть учтены неионогенные органические вещества, нейтральные взвешенные примеси, помехи, искажающие результаты, - газы и др. Невозможно расчетным путем точно найти соответствие между значениями удельной электропроводимости и сухим остатком или даже суммой всех отдельно определенных веществ раствора, так как в природной воде разные ионы имеют разную удельную электропроводимость, которая одновременно зависит от минерализации раствора и его температуры. Чтобы установить такую зависимость, необходимо несколько раз в году экспериментально устанавливать соотношение между этими величинами для каждого конкретного объекта.

  • 1 мкСм/см = 1 · МOм · см; 1 См/м = 1 · Ом · м.

Для чистых растворов хлорида натрия (NаСl) в дистилляте приблизительное соотношение:

  • 1 мкСм/см ≈ 0,5 мг NаСl/л.

Это же соотношение (приближенно) с учетом приведенных оговорок может быть принято для большей части природных вод с минерализацией до 500 мг/л (все соли пересчитываются на NаСl).

При минерализации природной воды 0,8-1,5 г/л можно принять:

  • 1 мкСм/см ≈ 0,65 мг солей/л,

а при минерализации - 3-5 г/л:

  • 1 мкСм/см ≈ 0,8 мг солей/л.

Содержание в воде взвешенных примесей, прозрачность и мутность воды

Мутность воды выражают в единицах:

  • JTU (Jackson Turbidity Unit) - единица мутности по Джексону;
  • FTU (Formasin Turbidity Unit, обозначается также ЕМФ) - единица мутности по формазину;
  • NTU (Nephelometric Turbidity Unit) - единица мутности нефелометрическая.

Дать точное соотношение единиц мутности и содержания взвешенных веществ невозможно. Для каждой серии определений нужно строить калибровочный график, позволяющий определять мутность анализируемой воды по сравнению с контрольным образцом.

Приблизительно можно представить: 1 мг/л (взвешенных веществ) ≡ 1-5 единиц NTU.

Если у замутняющей смеси (диатомовая земля) крупность частиц - 325 меш, то: 10 ед. NTU ≡ 4 ед. JTU.

ГОСТ 3351-74 и СанПиНы 2.1.4.1074-01 приравнивают 1,5 ед. NTU (или 1,5 мг/л по кремнезему или каолину) 2,6 ед. FTU (ЕМФ).

Соотношение между прозрачностью по шрифту и мутностью:

Соотношение между прозрачностью по «кресту» (в см) и мутностью (в мг/л):

Единица измерения в СИ - мг/л, г/м 3 , мкг/л.

В США и в некоторых других странах минерализацию выражают в относительных единицах (иногда в гранах на галлоны, gr/gal):

  • ppm (parts per million) - миллионная доля (1 · 10 -6) единицы; иногда ppm (parts per millе) обозначают и тысячную долю (1 · 10 -3) единицы;
  • ррb - (parts per billion) биллионная (миллиардная) доля (1 · 10 -9) единицы;
  • ррt - (parts per trillion) триллионная доля (1 · 10 -12) единицы;
  • ‰ - промилле (применяется и в России) - тысячная доля (1 · 10 -3) единицы.

Соотношение между единицами измерения минерализации: 1мг/л = 1ррm = 1 · 10 3 ррb = 1 · 10 6 ррt = 1 · 10 -3 ‰ = 1 · 10 -4 %; 1 gr/gal = 17,1 ppm = 17,1 мг/л = 0,142 lb/1000 gal.

Для измерения минерализации соленых вод, рассолов и солесодержания конденсатов правильнее применять единицы: мг/кг . В лабораториях пробы воды отмеряют объемными, а не массовыми долями, поэтому целесообразно в большинстве случаев количество примесей относить к литру. Но для больших или очень малых значений минерализации ошибка будет чувсвительной.

По СИ объем измеряется в дм 3 , но допускается и измерение в литрах , потому что 1 л = 1,000028 дм 3 . С 1964г. 1 л приравнен к 1 дм 3 (точно).

Для соленых вод и рассолов иногда применяют единицы измерения солености в градусах Боме (для минерализации >50 г/кг):

  • 1°Ве соответствует концентрации раствора, равной 1% в пересчете на NаСl.
  • 1% NаСl = 10 г NаСl/кг.


Сухой и прокаленный остаток

Сухой и прокаленный остаток измеряются в мг/л. Сухой остаток не в полной мере характеризует минерализацию раствора, так как условия его определения (кипячение, сушка твердого остатка в печи при температуре 102-110°С до постоянной массы) искажают результат: в частности, часть бикарбонатов (условно принимается - половина) разлагается и улетучивается в виде СО 2 .


Десятичные кратные и дольные единицы измерения величин

Десятичные кратные и дольные единицы измерения величин, а также их наименования и обозначения следует образовывать с помощью множителей и приставок, приведенных в таблице:

(по материалам сайта https://aqua-therm.ru/).

ВВЕДЕНИЕ

Физическая величина - характеристика одного из свойств физического объекта (физической системы, явления или процесса), общая в качественном отношении многим физическим объектам, но в количественном отношении индивидуальная для каждого объекта.

Индивидуальность понимается в том смысле, что значение величины или размер величины может быть для одного объекта в определенное число раз больше или меньше, чем для другого.

Значение физической величины - оценка ее размера в виде некоторого числа принятых для нее единиц или числа по принятой для нее шкале. Например, 120 мм - значение линейной величины; 75 кг - значение массы тела.

Различают истинное и действительное значения физической величины. Истинное значение - значение, идеально отражающее свойство объекта. Действительное значение - значение физической величины, найденное экспериментально, достаточно близкое к истинному значению, которое можно использовать вместо него.

Измерение физической величины – это совокупность операций по применению технического средства, хранящего единицу, или воспроизводящую шкалу физической величины, заключающееся в сравнении (в явном или неявном виде) измеряемой величины с ее единицей или шкалой с целью получения значения этой величины в форме, наиболее удобной для использования.

Различают три вида физических величин, измерение которых осуществляется по принципиально различным правилам.

К первому виду физических величин относятся величины, на множестве размеров которых определены лишь отношения порядка и эквивалентности. Это отношения типа "мягче", "тверже", "теплее", "холоднее" и т.д.

К величинам такого рода относятся, например, твердость, определяемая как способность тела оказывать сопротивление проникновению в него другого тела; температура, как степень нагретости тела и т.п.

Существование таких соотношений устанавливается теоретически или экспериментально с помощью специальных средств сравнения, а также на основе наблюдений за результатами воздействия физической величины на какие-либо объекты.

Для второго вида физических величин отношение порядка и эквивалентности имеет место как между размерами, так и между разностями в парах их размеров.

Характерный пример – шкала интервалов времени. Так, разности интервалов времени считаются равными, если расстояния между соответствующими отметками равны.

Третий вид составляют аддитивные физическиевеличины.

Аддитивными физическими величинами называются величины, на множестве размеров которых определены не только отношения порядка и эквивалентности, но операции сложения и вычитания

К таким величинам относятся, например, длина, масса, сила тока и т.п. Их можно измерять по частям, а также воспроизводить с помощью многозначной меры, основанной на суммировании отдельных мер.

Сумма масс двух тел - это масса такого тела, которое уравновешивается на равноплечных весах первые два.

Размеры любых двух однородных ФВ или два любых размера одной и той же ФВ можно сравнивать между собой, т. е. находить, во сколько раз один больше (или меньше) другого. Чтобы сравнить между собой m размеров Q", Q", ... , Q (m) , необходимо рассмотреть С m 2 их отношений. Легче сравнить каждый их них с одним размером [Q] однородной ФВ, если принять его за единицу размера ФВ, (сокращенно - за единицу ФВ). В результате такого сравнения получаем выражения размеров Q", Q", ... , Q (m) в виде некоторых чисел n", n", .. . ,n (m) единиц ФВ: Q" = n" [Q]; Q" = n"[Q]; ...; Q (m) = n (m) [Q]. Если сравнение выполняется экспериментально, то потребуется всего m экспериментов (вместо C m 2), а сравнение размеров Q", Q", ... , Q (m) между собой может быть выполнено только путем вычислений типа

где n (i) /n (j) – отвлеченные числа.

Равенство типа

называют основным уравнением измерения, где n [Q] – значение размера ФВ (сокращенно - значение ФВ). Значение ФВ представляет собой именованное число, составленное из числового значения размера ФВ, (сокращенно - числового значения ФВ) и наименования единицы ФВ. Например, при n = 3,8 и [Q] = 1 грамм размер массы Q = n [Q] = 3,8 грамма, при n = 0,7 и [Q] =1 ампер размер силы тока Q = n [Q] = 0,7 ампера. Обычно вместо «размер массы равен 3,8 грамма», «размер силы тока равен 0,7 ампера» и т. п. говорят и пишут более кратко: «масса равна 3,8 грамма», «сила тока равна 0,7 ампера» и т. п.

Размеры ФВ чаще всего узнают в результате их измерения. Измерение размера ФВ (сокращенно - измерение ФВ) состоит в том, что опытным путем с помощью специальных технических средств находят значение ФВ и оценивают близость этого значения к значению, идеально отображающему размер этой ФВ. Найденное таким образом значение ФВ будем называть номинальным.

Один и тот же размер Q может быть выражен разными значениями с различными числовыми значениями в зависимости от выбора единицы ФВ (Q = 2 часа = 120 минут = 7200 секунд = = 1/12 суток). Если взять две различные единицы и , то можно написать Q = n 1 и Q = n 2 , откуда

n 1 /n 2 = /,

т. е. числовые значения ФВ обратно пропорциональны ее единицам.

Из того что размер ФВ не зависит от выбранной ее единицы, вытекает условие однозначности измерений, заключающееся в том, что отношение двух значений некоторой ФВ не должно зависеть от того, какие единицы использовались при измерении. Например, отношение скоростей автомобиля и поезда не зависит от того, выражены ли эти скорости в километрах в час или в метрах в секунду. Это условие, кажущееся на первый взгляд непреложным, к сожалению, пока еще не удается соблюсти при измерении некоторых ФВ (твердости, светочувствительности и др.).


1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Понятие о физической величине

Вес объекты окружающего мира характеризуются своими свойствами. Свойство - философская категория, выражающая такую сторону объекта (явления, процесса), которая обуславливает его различие или общность с другими объектами (явлениями, процессами) и обнаруживается в его отношениях к ним. Свойство - категория качественная. Для количественного описания различных свойств процессов и физических тел вводится понятие величины. Величина - это свойство чего-либо, которое может быть выделено среди других свойств и оценено тем или иным способом, в том числе и количественно. Величина не существует сама по себе, имеет место лишь постольку, поскольку существует объект со свойствами, выраженными данной величиной.

Анализ величин позволяет разделить (рис. 1) их на два вида: величины материального вида (реальные) и величины идеальных моделей реальности (идеальные), которые относятся главным образом к математике и являются обобщением (моделью) конкретных реальных понятий.

Реальные величины, в свою очередь, делятся на физические и нефизические. Физическая величина в самом общем случае может быть определена как величина, свойственная материальным объектам (процессам, явлениям), изучаемым в естественных (физика, химия) и технических науках. К нефизическим величинам следует отнести величины, присущие общественным (нефизическим) наукам – философии, социологии, экономике и т.п.



Рис. 1. Классификация величин.

Документ РМГ 29-99 трактует физическую величину как одно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них. Индивидуальность в количественном отношении понимают в том смысле, что свойство может быть для одного объекта в определенное число раз больше или меньше, чем для другого.

Физические величины целесообразно разделить на измеряемые и оцениваемые. Измеряемые ФВ могут быть выражены количественно в виде определенного числа установленных единиц измерения. Возможность введения и использования таких единиц является важным отличительным признаком измеряемых ФВ. Физические величины, для которых по тем или иным причинам не может быть введена единица измерения, могут быть только оценены. Под оцениванием понимается операция приписывания данной величине определенного числа, проводимая по установленным правилам. Оценивание величины осуществляется при помощи шкал. Шкала величины - упорядоченная совокупность значений величины, служащая исходной основой для измерения данной величины.

Нефизические величины, для которых единица измерения в принципе не может быть введена, могут быть только оценены. Следует отметить, что оценивание нефизических величин не входит в задачи теоретической метрологии.

Для более детального изучения ФВ необходимо классифицировать, выявить общие метрологические особенности их отдельных групп. Возможные классификации ФВ приведены на рис. 2.

По видам явлений ФВ делятся на:

Вещественные, т.е. величины, описывающие физические и физико-химические свойства веществ, материалов и изделий из них. К этой группе относятся масса, плотность, электрическое сопротивление, емкость, индуктивность и др. Иногда эти ФВ называют пассивными. Для их измерения необходимо использовать вспомогательный источник энергии, с помощью которого формируется сигнал измерительной информации. При этом пассивные ФВ преобразуются в активные, которые и измеряются;

Энергетические, т.е. величины, описывающие энергетические характеристики процессов преобразования, передачи и использования энергии. К ним относятся ток, напряжение, мощность, энергия. Эти величины называют активными.

Они могут быть преобразованы в сигналы измерительной информации без использования вспомогательных источников энергии;

Характеризующие протекание процессов во времени, К этой группе относятся различного вида спектральные характеристики, корреляционные функции и другие параметры.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!