Реферат: Мониторинг технического состояния жилых зданий. Общий мониторинг технического состояния зданий Виды мониторинга зданий и сооружений

Воздействий

Цели мониторинга технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и природно-техногенных воздействий, реализуют на основе:

Определения абсолютных и относительных значений деформаций конструкций зданий (сооружений) и сравнения их с расчетными и допустимыми значениями;

Выявления причин возникновения и степени опасности деформаций для нормальной эксплуатации объектов;

Принятия своевременных мер по борьбе с возникающими деформациями или по устранению их последствий;

Уточнения расчетных данных и физико-механических характеристик грунтов;

Уточнения расчетных схем для различных типов зданий (сооружений) и коммуникаций;

Установления эффективности принимаемых профилактических и защитных мероприятий;

Уточнения закономерностей процесса сдвижения грунтовых пород и зависимости его параметров от основных влияющих факторов.

Мониторинг технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и природно-техногенных воздействий, планируют до начала строительства или ожидаемого природно-техногенного воздействия.

Научно-техническое сопровождение и мониторинг нового строительства или реконструкции объектов допускается осуществлять в соответствии с МРДС 02-2008.

При мониторинге технического состояния зданий (сооружений), попадающих в зону влияния нового строительства или реконструкции объектов, устраиваемых открытым способом, используют данные (радиус зоны влияния, дополнительные деформации и др.) в соответствии с МГСН 2.07-2001.

Оценку зоны влияния динамических воздействий на окружающие здания и сооружения при погружении свайных элементов строящихся зданий проводят в соответствии с СНиП 3.02.01-87.

Внешние границы мульды сдвижения на земной поверхности при подземном способе возведения объекта определяют по граничным углам, а внешние границы опасной ее части - по углам сдвижения. Значения этих углов зависят от свойств горных пород и определяются опытным путем. При отсутствии опытных данных значения граничных углов и углов сдвижения определяют в соответствии с приложением П ГОСТ 31937-2011. Углы разрывов принимают на 10° более углов сдвижения.



Определение значений ожидаемых максимальных сдвижений и деформаций земной поверхности и ожидаемых сдвижений и деформаций в точках мульды сдвижений при подземном способе возведения объекта проводят в соответствии с приложением Р ГОСТ 31937-2011.

Общую продолжительность процесса сдвижения земной поверхности над производимой подземной выработкой и период опасных деформаций определяют в соответствии с приложением С ГОСТ 31937-2011.

При мониторинге технического состояния зданий (сооружений), попадающих в зону влияния строительства или реконструкции объектов при подземном способе их возведения, проводят геодезическо-маркшейдерские работы, которые выполняются в процессе всего производственного цикла строительства объекта до затухания процесса деформирования как самого объекта, так и массива грунтовых пород в соответствии с согласованной в установленном порядке проектной документацией.

Составлению программы наблюдений должны предшествовать оценка и прогноз геомеханического состояния породного массива в районе крупного строительства и зоне его влияния на объекты, расположенные на земной поверхности.

Оценку геомеханического состояния до начала строительных работ проводят на основании геологических данных и инженерных изысканий. При этом особое внимание уделяют определению природного поля напряжений, характеристике тектонических нарушений, трещиноватости, слоистости, водообильности, карстообразованию и другим особенностям массива.

Прогноз изменения геомеханического состояния породного массива под влиянием горных работ проводят как для типовых условий строительства и эксплуатации объекта, так и для аварийных ситуаций (разрушение крепи котлованов, прорыв в них плывунов, развитие карстовых образований, активизация древних оползней и т. д.). Прогноз состоит из определения ожидаемых параметров развития геомеханических процессов, основными из которых являются:



Размеры и местоположения зон сдвижения;

Значения максимальных сдвижений и деформаций;

Характер распределения деформаций в мульде сдвижения;

Общая продолжительность процесса сдвижения и периода опасных деформаций.

Инструментальные наблюдения за сдвижением земной поверхности и расположенными на ней объектами проводят в целях получения информации об изменении геомеханического состояния породного массива, на основании которой можно своевременно принимать необходимые профилактические и защитные меры.

Инструментальные наблюдения за сдвижением земной поверхности и сооружений проводят с помощью системы реперов, закладываемых в грунт и конструкции зданий и сооружений, а за сдвижением толщи горных пород - с помощью глубинных реперов, закладываемых в скважины. На застроенных территориях для исключения возможности повреждений подземных коммуникаций места закладки реперов должны согласовываться с органами местной исполнительной власти. Закладка реперов и начальные наблюдения на них должны проводиться до начала строительства. Порядок разбивки наблюдательной сети реперов представлен в приложении Т ГОСТ 31937-2011.

Одновременно с разбивкой наблюдательной сети реперов должны намечаться места для закладки трех исходных реперов, с помощью которых в дальнейшем будет определяться положение опорных реперов профильной линии по высоте и контролироваться их неподвижность.

Для наблюдения за отдельными зданиями (сооружениями), попадающими в зону влияния нового строительства и природно-техногенных воздействий, закладывают стенные и грунтовые реперы. До начала наблюдений обследуют техническое состояние зданий (сооружений), измеряют динамические параметры, составляют паспорта.

Наблюдения за сдвижением земной поверхности, а также за деформациями зданий и сооружений, попадающих в зону влияния строительства подземного сооружения, заключаются в периодическом инструментальном определении положения реперов с фиксированием видимых нарушений, а также всех факторов, влияющих на значения и характер сдвижений и деформаций. Для зданий (сооружений) также проводят измерения их динамических параметров.

Наблюдения за деформациями оснований зданий (сооружений) проводят по ГОСТ 24846. При наблюдениях за зданиями определяют неравномерность оседаний фундаментов, фиксируют трещины и другие повреждения конструкций, надежность узлов их опирания, наличие необходимых зазоров в швах и шарнирных опорах. Для промышленных зданий определяют также относительные горизонтальные перемещения отдельно стоящих фундаментов колонн, крены фундаментов технологического оборудования, а при наличии мостовых кранов - отклонения от проектного положения подкрановых путей: поперечный и продольный уклоны, изменения ширины колеи и приближение крана к строениям.

Определение точности измерения вертикальных и горизонтальных деформаций проводят в зависимости от ожидаемого расчетного значения перемещения. При отсутствии данных по расчетным значениям деформаций оснований и фундаментов допускается устанавливать класс точности измерений вертикальных и горизонтальных перемещений:

I - для зданий (сооружений): уникальных, находящихся в эксплуатации более 50 лет, возводимых на скальных и полускальных грунтах;

II - для зданий (сооружений), возводимых на песчаных, глинистых и других сжимаемых грунтах;

III - для зданий (сооружений), возводимых на насыпных, просадочных, заторфованных и других сильно сжатых грунтах;

IV - для земляных сооружений.

Предельные погрешности измерения крена в зависимости от высоты Н здания (сооружения) не должны превышать следующих значений, мм:

Для гражданских зданий (сооружений) - 0,0001Н;

Для промышленных зданий (сооружений) - 0,0005Н;

Для фундаментов под машины и агрегаты - 0,00001Н.

Геодезическими методами и приборами по наблюдательным реперам измеряют вертикальные и горизонтальные перемещения земной поверхности и, при необходимости, дна котлована. При появлении трещин на земной поверхности в пределах приоткосной зоны организуют дополнительные систематические наблюдения за их развитием по протяженности, ширине и глубине.

Одновременно с инструментальными наблюдениями на земной поверхности проводят маркшейдерские наблюдения непосредственно в подземном сооружении.

По материалам измерений, вычислений и геолого-маркшейдерской документации составляют заключение, содержащее необходимую информацию о состоянии зданий и сооружений, попадающих в зону влияния крупного нового строительства и природно-техногенных воздействий, изменении геомеханического состояния породного массива; степени опасности и скорости развития негативных процессов (при необходимости). К заключению прикладывают документацию, подтверждающую сделанные в нем выводы.

Форма заключения о техническом состоянии объекта, попадающего в зону влияния нового строительства и природно-техногенных воздействий, представлена в приложении У ГОСТ 31937-2011.

Приложение У
(обязательное)

Форма заключения (текущего) по мониторингу технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и

природно-техногенных воздействий

Составляется головной организацией по результатам этапа мониторинга технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и природно-техногенных воздействий.

Заключение по этапу мониторинга технического состояния объектов, попадающих в зону влияния нового строительства и природно-техногенных воздействий
1 Информация, определяющая местонахождение и тип воздействия (эпицентр природно-техногенного воздействия, адрес стройки)
2 Номер этапа мониторинга
4 Радиус зоны влияния воздействия
5 Перечень объектов, попадающих в зону влияния воздействия
6 Головная организация этапа мониторинга
7 Перечень организаций, проводивших этап мониторинга технического состояния объектов, с указанием, какой объект обследовался и какой организацией
8 Перечень объектов, категория технического состояния которых соответствует ограниченно работоспособному состоянию
9 Перечень объектов, категория технического состояния которых соответствует аварийному состоянию
10 Общая оценка ситуации
11 Информация, требующая экстренного решения возникших проблем безопасности

Приложения - Заключения по этапу мониторинга технического состояния каждого объекта, находящегося в ограниченно работоспособном или аварийном состоянии (см. приложение Н).

Заключения по этапу мониторинга технического состояния каждого объекта, не находящегося в ограниченно работоспособном или аварийном состоянии (см. приложение Л).

Совмещенный план наблюдательной системы реперов и подземного сооружения.

Вертикальные геологические разрезы по профильным линиям.

Ведомости сдвижений реперов в вертикальной и горизонтальной плоскостях по направлению профильной линии.

Ведомости скоростей смещения реперов.

Ведомости оседания реперов и измеренных длин интервалов между ними.

Результаты вычислений по каждому из реперов оседания земной поверхности по всем расчетным интервалам между реперами:

Наклонов, кривизны, радиусов кривизны, горизонтальных деформаций;

Характерных точек мульды сдвижения относительно границ подземного сооружения (границ зоны влияния, точек с максимальными растяжениями и сжатиями, точек с максимальными наклонами, точек с максимальной кривизной;

Участков земной поверхности, на которых образовались сосредоточенные деформации в виде трещин, ступеней и уступов).

Общие положения

Геотехнический мониторинг – комплекс работ, основанный на натурных наблюдениях за поведением конструкций вновь возводимого или реконструируемого сооружения, его основания, в том числе грунтового массива, окружающего (вмещающего) сооружение, и конструкций сооружений окружающей застройки.

Целью геотехнического мониторинга является обеспечение безопасности строительства и эксплуатационной надежности объектов нового строительства или реконструкции и сооружений окружающей застройки за счет своевременного выявления изменения контролируемых параметров конструкций и грунтов оснований, которые могут привести к переход у объектов в ограниченно работоспособное или аварийное состояние

Задачи, решаемые при проведении геотехнического мониторинга, определяются СП22.13330.2011 (пункт 12.2).

Объекты нового строительства и реконструкции, подлежащие геотехническому мониторингу, устанавливаются СП 22.13330.2011 (пункт 12.4) в зависимости от уникальности объекта, уровня ответственности сооружений, категории сложности инженерно-геологических условий и глубины котлована. Уникальность объекта и уровень ответственности сооружения устанавливаютсяв соответствии с Федеральным законом от 30 декабря 2009 г. N384-ФЗ «Технический регламент о безопасности зданий и сооружений», Градостроительным кодексом РФ от 29.12.2004 N190-ФЗ и указаниями ГОСТ 27751.

Сооружения окружающей застройки уровней ответственности КС-3 (повышенный) и КС-2 (нормальный), в т.ч. подземные инженерные коммуникации, подлежат геотехническому мониторингу при их расположении в зоне влияния нового строительства или реконструкции, размеры которой определяются по результатам геотехнического прогноза. При отсутствии результатов геотехнического прогноза влияния возводимого сооружения объекты геотехнического мониторинга окружающей застройки назначаются по предварительной зоне влияния, определяемой в соответствии с указаниями СП22.13330.2011 (пункт 9.36).

Геотехнический мониторинг объектов нового строительства и реконструкции, а также сооружения окружающей застройки, в т.ч. подземных инженерных коммуникаций, осуществляют в соответствии с программой, которая разрабатывается и утверждается в составе проектной документации.

Для сооружений уровня ответственности КС-3 (повышенный) при III категории инженерно-геологических условий или по специальному заданию в других случаях на основании программы разрабатывается проект геотехнического мониторинга (наблюдательной станции).

Наблюдательная станция геотехнического мониторинга в период строительства должна обеспечивать возможность ее последующего включения в структурированную систему мониторинга и управления инженерными системами сооружений (СМИС)в случае, если предусмотрена система мониторинга объекта в период эксплуатации. При этом используемые приборы и оборудование рекомендуется подбирать исходя из условий обеспечения проектного срока действия системы мониторинга в период эксплуатации, требуемой точности и устойчивости к внешним воздействиям, возможности дистанционного снятия показаний

Разработка программы и проекта геотехнического мониторинга, а также его проведение выполняется специализированными организациями, основным направлением деятельности которых является выполнение комплексных инженерных изысканий и проектирование оснований, фундаментов и подземных частей сооружений, располагающими квалифицированным и опытным персоналом, соответствующим сертифицированным оборудованием и программным обеспечением.

Строительных конструкций

Рассмотренные выше системы мониторинга напряженно-деформированного состояния строительных конструкций разрабатываются на основе различных датчиков: тензорезисторов, волоконно-оптических, пьезоэлектрических и струнных. Следовательно, для выбора системы мониторинга необходимо проанализировать датчики, на основе которых она построена.

ЗАО «Триада- Холдинг»

Струнный датчик напряжения.

Струнный датчик напряжения используется для измерения напряжений. Состоит из катушки и струнного элемента с выпусками из металлических стержней с обоих концов. Датчики приваривают к арматурному каркасу или крепят на поверхность металлической конструкции. Датчики отличает повышенная прочность, надежность и герметичность. Данные с датчиков можно считывать как в индивидуальном режиме, так и составе системы сбора данных.

Достоинства: прочный, надежный, простой в работе, подходит для использования при считывании и накоплении данных в дистанционном режиме, герметичен (водонепроницаем), калибруется индивидуально, большая длина кабеля не влияет на устойчивость сигнала, не реагирует на изгибание, встроенный термистор.

Рис. 1.12 Общий вид датчика напряжений.

Замоноличиваемый струнный тензометр.

Замоноличиваемые струнные тензометры фирмы Soil Instruments предназначены для измерения деформаций в железобетонных конструкциях. Измерительный сенсор датчика состоит из струнного элемента, прикрепленного к специальным фланцам на концах корпуса датчика и вторичного преобразователя в виде электромагнитной катушки.

Корпус датчика изготовлен из нержавеющей стали. Измерительная база составляет 150 мм. Перед заливкой бетона датчик можно крепить к арматуре обычной вязальной проволокой или создавать 2-, 3- или 4-направленную розетку, обеспечивая, таким образом, возможность измерения деформаций в нескольких направлениях. Кроме того, датчик можно замоноличивать в бетонный блок для последующего замоноличивания всего блока (с установленным датчиком внутри) в новую конструкцию или в предварительно прорезанные отверстия в существующей конструкции. После замоноличивания датчика блок с электромагнитной катушкой, установленный на корпусе датчика, фиксирует любые деформации в конструкции.

Датчики можно опрашивать индивидуально либо автоматически в дистанционном режиме (если они являются частью системы сбора данных).

Кабели от датчиков прокладывают к считывающему устройству или измерительному пункту, и их, так же как и датчик, следует предохранять от повреждений во время заливки бетона.

Рис. 1.13 Замоноличиваемый струнный тензометр.

Беспроводной датчик наклона для измерения относительных смещений конструкции.

Электроуровни представляют собой жидкостные датчики, не содержащие подвижных частей. Они получают питание по мостовой или полумостовой схеме, а их выходная мощность зависит от величины и направления отклонения датчика. В датчик встроены выпрямитель и цифровой радиоприемник. Диапазон работы приемника составляет до 1000 м (в зависимости от модели и условий установки). Для передачи данных в цифровом формате применяется система кодирования сигнала.

Датчик имеет компактные размеры. Устанавливать датчик следует с таким расчетом, чтобы он не был подвержен температурным воздействиям, а также, чтобы при установке и в процессе эксплуатации имелась возможность проводить его обнуление.

Конструкция датчика предполагает установку непосредственно на поверхность конструкции. Датчик потребляет очень мало энергии и не создает электромагнитных помех.

Достоинства прибора: беспроводная связь между датчиком и накопителем данных, срок службы 10 лет (при считывании данных каждый час), передача данных в цифровом формате обеспечивает высокое качество и безопасность работы, возможность построения полного профиля вертикальных смещений, возможность автоматизации работы с помощью программного обеспечения «I-Site».

Рис. 1.14 Беспроводной датчик наклона.

Струнный датчик нагрузки.

Струнный датчик нагрузки состоит из стального корпуса цилиндрической формы со встроенными струнными чувствительными элементами (до 6 штук) для измерения сжатия цилиндра под действием нагрузки. Прочный многожильный кабель с оплеткой из ПВХ используется для соединения датчика со считывающим устройством через терминал. Как вариант возможно подключение датчиков напрямую к считывающему устройству. Для распределения нагрузки и компенсации неточностей выравнивания при установке под датчик помещают опорную плиту. Еще одну опорную плиту располагают между датчиком и анкером или устройством для натяжения болтов. Чтобы обеспечить получение надежных результатов, плиту замоноличивают так, чтобы ее верхняя грань была установлена плоско и перпендикулярно болту или кабелю.

Терминал требуется для соединения каждого чувствительного элемента датчика. (Показания усредняются считывающим устройством, и значение представляется на дисплее в инженерных единицах).

Рис. 1.15 Струнный датчик нагрузки.

Струнный датчик давления грунта.

Струнные датчики давления грунта предназначены для измерения давления в грунтовых массивах или насыпных конструкциях. Плоский элемент круглой формы состоит из двух сваренных по периферии пластин из нержавеющей стали, узкий зазор между которыми заполнен гидравлическим маслом; струнный преобразователь соединен с плоским элементом короткой стальной трубкой, образуя закрытую гидравлическую систему.

Датчик (элемент и преобразователь) устанавливают в среде, за которой осуществляется наблюдение, а армированный кабель соединяет его с терминалом, портативным считывающим устройством или накопителем данных. Точность показаний не зависит от длины кабеля.

Рис. 1.16 Струнный датчик давления грунта.

Датчик трещин BCD-5B.

Датчик трещин создан для измерения трещин, появляющихся в бетонных конструкциях и скалистом основании в шахтах и на карьерах. Обычные датчики трещин обладают большим измерительным усилием и не могут обеспечить высокую точность измерений, если не зафиксированы жестко. Более того, их трудно устанавливать на слабом скалистом грунте. По сравнению с ними для получения точных измерений датчик BCD-5B обладает чрезвычайно малым измеряемым усилием при простоте установки даже на слабом скалистом основании.

Волоконно-оптический датчик деформаций (СВОДД).

Волоконно-оптические датчики могут использоваться в ситуациях, в которых электронные устройства либо вообще нельзя использовать, либо такое использование сопровождается значительными трудностями и расходами.

Специалистами НПК «Мониторинг-Центр» ведутся интенсивные работы по созданию систем строительного мониторинга на базе волоконно-оптических измерительных систем. Сегодня НПК «Мониторинг-Центр» предлагает датчики деформаций и температуры, которые могут быть использованы в широком классе задач по обеспечению контроля уровня безопасности здания.

Технические характеристики комплекса измерения деформаций на базе СВОДД

Базовым датчиком, используемым в системе мониторинга, является волоконно-оптический датчик деформаций. Датчик имеет несколько вариантов исполнения, позволяющих заливать его в железобетонную конструкцию или крепить на поверхности строительных элементов. Установка датчиков в точках потенциального источника деструкции (большие нагрузки, моменты) регламентируется на стадии проекта. Контроль может вестись как в течение монтажа, так и во время эксплуатации сооружения. Электронный блок обработки сигналов получает постоянную информацию о состоянии конструкции во внутренних и внешних точках контроля. Сопоставление этой информации с проектными данными в постоянном режиме позволяет делать выводы о «здоровье» конструкции.

Измеритель сигналов волоконно-оптических датчиков (ИСВОД)

Технические характеристики.

Используемый в системе мониторинга электронный блок передачи и обработки сигналов (ИСВОД) имеет унифицированную структуру. Передача сигналов может осуществляться как по волоконно-оптическим каналам связи, так и по имеющимся электрическим сетям (что не требует дополнительных работ по оборудованию каналов связи), а также и в беспроводном формате.

Применение волоконно-оптических датчиков ЗАО «Мониторинг-Центр» в строительных конструкциях и сооружениях.

Вывод:

Датчики, на основе которых построены системы мониторинга обладают рядом достоинств и недостатков.

Тензодатчики. Достоинства: малые габариты и вес; малоинерционость, что позволяет применять тензодатчики как при статических, так и при динамических измерениях; обладают линейной характеристикой; позволяют дистанционно и во многих точках проводить измерения; способ установки их на исследуемую деталь не требует сложных приспособлений и не искажает поле деформаций исследуемой детали.

Основные недостатки тензодатчиков это температурная чувствительность, что в условиях крайнего севера сводит на нет все достоинства тензорезисторов, и малый выходной сигнал, который трудно измерять с высокой точностью.

Струнные датчики. Достоинства: стабильная частота выходного сигнала, нечувствительность к большой длине кабеля, меньшая по сравнению с тензодатчиками чувствительность к окружающей среде.

Основной недостаток однострунных датчиков - резко нелинейная статическая характеристика. У дифференциальных струнных датчиков нелинейность статической характеристики значительно меньше. Точность преобразования струнных датчиков увеличивается, если основной составляющей жёсткости механической системы является жёсткость струны.

Наиболее подходящим типом датчиков для применения в условиях крайнего севера и агрессивной среды являются волоконно-оптические датчики. Обладая рядом преимуществ:

Невосприимчивость к электромагнитным помехам;

Устойчивость к воздействиям внешней среды;

Твердотельная структура позволяет выдерживать предельные уровни вибрационных и ударных нагрузок;

Высокая чувствительность и широкополосность позволяют измерять и передавать информацию на значительное расстояние;

Отсутствие взаимной интерференции;

Взрывобезопасность (гарантируется абсолютной неспособностью волокна быть предпосылкой искры);

Высокая коррозионная стойкость, в особенности к химическим растворителям, маслам, воде;

Практически не имеют недостатков.

Наиболее подходящими датчиками для системы мониторинга напряженно-деформированного состояния строительных конструкций являются волоконно-оптические датчики, несмотря на их цену (от 45 до 65 тыс. руб.) они наилучшим образом подходят для работы в агрессивных условиях, а также в условиях крайнего севера (работают при температуре до -60°С). Немаловажным является и тот факт, что максимальное удаление датчика от станции составляет 1000 метров без ухудшения передаваемого сигнала, что является недостижимым результатом для датчиков другого типа.

Примеры проектирования и эксплуатации систем мониторинга конструкций и оснований зданий и сооружений.

ТЕМА 3. ОБЩИЙ МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ И СООРУЖЕНИЙ. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ И СООРУЖЕНИЙ, НАХОДЯЩИХСЯ В ОГРАНИЧЕННО РАБОТОСПОСОБНОМ ИЛИ АВАРИЙНОМ СОСТОЯНИИ. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ И СООРУЖЕНИЙ, ПОПАДАЮЩИХ В ЗОНУ ВЛИЯНИЯ НОВОГО СТРОИТЕЛЬСТВА, РЕКОНСТРУКЦИИ И ПРИРОДНО-ТЕХНОГЕННЫХ ВОЗДЕЙСТВИЙ. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ УНИКАЛЬНЫХ ЗДАНИЙ И СООРУЖЕНИЙ.

Общий мониторинг технического состояния зданий и сооружений

Общий мониторинг технического состояния зданий и сооружений – это система наблюдения и контроля, проводимая по определенной программе, утверждаемой заказчиком, для выявления объектов, на которых произошли значительные изменения напряженно-деформированного состояния несущих конструкций или крена, и для которых необходимо обследование их технического состояния (изменения напряженно-деформированного состояния характеризуются изменением имеющихся и возникновением новых деформаций или определяются путем инструментальных измерений).

Общий мониторинг технического состояния зданий и сооружений проводят для выявления объектов, изменение напряженно-деформированного состояния которых требует обследования их технического состояния.

При общем мониторинге, как правило, не проводят обследование технического состояния зданий и сооружений в полном объеме, а проводят визуальный осмотр конструкций с целью приблизительной оценки категории технического состояния, измеряют динамические параметры конкретных зданий и сооружений (см. приложение Л ГОСТ 31937-2011) и составляют паспорт здания или сооружения (см. приложение М ГОСТ 31937-2011).

Если по результатам приблизительной оценки категория технического состояния здания или сооружения соответствует нормативному или работоспособному техническому состоянию, то повторные измерения динамических параметров проводят через два года.

Если по результатам повторных измерений динамических параметров их изменения не превышают 10 %, то следующие измерения проводят еще через два года.

Если по результатам приблизительной оценки категория технического состояния здания или сооружения соответствует ограниченно работоспособному или аварийному состоянию или если при повторном измерении динамических параметров здания или сооружения результаты измерений различаются более чем на 10 %, то техническое состояние такого здания или сооружения подлежит обязательному внеплановому обследованию.

По результатам общего мониторинга технического состояния зданий и сооружений исполнитель составляет заключение (см. приложение К ГОСТ 31937-2011) по этапу общего мониторинга технического состояния зданий и сооружений и заключения о техническом состоянии каждого здания и сооружения, по которым проводился общий мониторинг технического состояния (см. приложение Л ГОСТ 31937-2011).


Приложение К
(обязательное)

Форма заключения (текущего) по этапу общего мониторинга
технического состояния зданий (сооружений)

Заключение составляется головной организацией по результатам этапа общего мониторинга технического состояния зданий (сооружений).

Заключение по этапу общего мониторинга технического состояния зданий (сооружений)
1 Перечень адресов объектов
2 Номер этапа мониторинга
3 Время проведения этапа мониторинга
4 Головная организация этапа мониторинга
5 Перечень организаций, проводивших этап мониторинга технического состояния объектов, с указанием, какой объект обследовался и какой организацией
6 Перечень объектов, категория технического состояния которых соответствует ограниченно работоспособному состоянию
7 Перечень объектов, категория технического состояния которых соответствует аварийному состоянию
8 Общая оценка ситуации
9 Информация, требующая экстренного решения возникших проблем безопасности

Приложение - Заключения по мониторингу технического состояния каждого объекта при общем мониторинге технического состояния зданий и сооружений города см. в приложении Л.

Приложение Л
(обязательное)

Форма заключения (текущего) по этапу мониторинга технического состояния объекта
при общем мониторинге зданий (сооружений)

Заключение по этапу мониторинга технического состояния объекта при общем мониторинге технического состояния зданий и сооружений
1 Адрес объекта
2 Номер этапа мониторинга
3 Время проведения этапа мониторинга
4 Организация, проводившая этап мониторинга
5 Предыдущее значение крена объекта вдоль большой оси
6 Текущее значение крена объекта вдоль большой оси
7 Предыдущее значение крена объекта вдоль малой оси
8 Текущее значение крена объекта вдоль малой оси
9 Предыдущее значение периода основного тона собственных колебаний вдоль большой оси
10 Текущее значение периода основного тона собственных колебаний вдоль большой оси
11 Предыдущее значение периода основного тона собственных колебаний вдоль малой оси
12 Текущее значение периода основного тона собственных колебаний вдоль малой оси
13 Предыдущее значение периода основного тона собственных колебаний вдоль вертикальной оси
14 Текущее значение периода основного тона собственных колебаний вдоль вертикальной оси
15 Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси
16 Текущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси
17 Предыдущее значение логарифмического декремента основного

Министерство сельского хозяйства Российской Федерации

«Московский Государственный Университет Природообустройства»

Строительный факультет

Кафедра экспертизы и управления недвижимостью

на тему: «Мониторинг зданий и сооружений»

Выполнили

студентки группы 419 В.И. Рыбина

Н.С. Филатова

Проверил В.Я. Жарницкий

Москва2011 г.


Введение

Основные термины

1. Общие правила проведения обследования и мониторинга технического состояния зданий и сооружений

2. Мониторинг технического состояния зданий и сооружений. Основные положения

3. Общий мониторинг технического состояния зданий и сооружений

4. Мониторинг технического состояния зданий и сооружений, находящихся в ограниченно работоспособном или аварийном состоянии

5. Мониторинг технического состояния зданий и сооружений, попадающих в зону влияния нового строительства, реконструкции или природно-техногенных воздействий

6. Мониторинг технического состояния уникальных зданий и сооружений

7. Общие требования к проектированию и разработке автоматизированных стационарных систем мониторинга технического состояния зданий (сооружений)

8. Требования к мониторингу общей безопасности объектов (с комплексной оценкой риска от аварийных воздействий природного и техногенного характера)

9. Геотехнический мониторинг зданий и сооружений (включая геодезический мониторинг)

10. Организация мониторинга зданий и сооружений в городе Москва

11. Примеры проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий

Литература

Приложения


Введение

Для современного этапа экономического и общественного развития в России характерно расширение строительного производства и проведение масштабного строительства в крупных городах, в первую очередь, в Москве и Санкт-Петербурге, сопровождающееся постоянным ростом сложности возводимых объектов и условий, в которых осуществляется их строительство. Это неизбежно порождает новые задачи, связанные с обеспечением безопасной жизнедеятельности в условиях мегаполиса, определяющейся, во-первых, надежностью самих строящихся сооружений, и, во-вторых, влиянием проводимого строительства на уже существующую инфраструктуру.

Современные тенденции в строительстве, а именно - увеличение этажности зданий, уплотнение городской застройки, стесненность строительных площадок, освоение подземного пространства, насыщение инженерными коммуникациями неизменно приводят к возникновению и последующему увеличению негативного техногенного воздействия проводимого строительства на уже построенные объекты, расположенные в прилегающих зонах.

В связи с этим особое значение приобретает проблема контроля технического состояния зданий и сооружений с целью предупреждения возникновения аварийных ситуаций и обоснованность выбора комплекса инженерных мероприятий по их недопущению. При этом очевидно, что контроль технического состояния несущих конструкций должен носить систематический характер и позволять осуществлять оценку происходящих изменений на основе количественных критериев, т.е. базироваться на процедурах выявления соответствия фактической прочности, жесткости и устойчивости конструктивных элементов нормативным требованиям.

В настоящее время в г.Москва проводятся работы по обследованию технического состояния отдельных объектов. Однако большое количество зданий и сооружений не охвачено вообще никаким контролем, хотя жизнедеятельность города динамично приводит как к ухудшению свойств грунтов, так и к негативным воздействиям силового и не силового характера на наземные конструкции зданий и сооружений. Все это в условиях исчерпания нормативных сроков эксплуатации большого количества объектов не допустимо и требует системно организованных наблюдений. Ведь сроки эксплуатации многих зданий в нашей стране давно превысили все допустимые нормы, происходит накопление физического износа, что крайне опасно для жизнедеятельности людей. Такие здания нуждаются в постоянном контроле их технического состояния. И если в Москве и Санкт-Петербурге производится хоть какой-то контроль технического состояния зданий, то на периферии этот вопрос до сих пор остается без внимания.

Основные термины

Здание - результат строительства, представляющий собой объемную строительную систему, имеющую надземную и (или) подземную части, включающую в себя помещения, сети инженерно-технического обеспечения и системы инженерно-технического обеспечения и предназначенную для проживания и (или) деятельности людей, размещения производства, хранения продукции или содержания животных.

Сооружение - результат строительства, представляющий собой объемную, плоскостную или линейную строительную систему, имеющую наземную, надземную и (или) подземную части, состоящую из несущих, а в отдельных случаях и ограждающих строительных конструкций и предназначенную для выполнения производственных процессов различного вида, хранения продукции, временного пребывания людей, перемещения людей и грузов.

Уникальные здания и сооружения – сооружения, на которые в проектной документации предусмотрена хотя бы одна из следующих характеристик:

Использование конструкций и конструктивных систем, требующих применения нестандартных методов расчета, либо разработки специальных методов расчета, либо требующих экспериментальной проверки на физических моделях, а также применяемых на территориях, сейсмичность которых превышает 9 баллов;

Высота более 100 м;

Пролет более 100 м;

Вылет консолей более 20 м;

Заглубление подземной части ниже планировочной отметки земли более чем на 10 метров.

К уникальным зданиям и сооружениям следует относить, также, зрелищные, спортивные, культовые сооружения, выставочные павильоны, многофункциональные офисные, торгово-развлекательные комплексы и т.п. с максимальным расчётным пребыванием более 1000 человек внутри объекта или более 10000 человек вблизи объекта.

Жизненный цикл здания или сооружения - период, в течение которого осуществляются инженерные изыскания, проектирование, строительство (в том числе консервация), эксплуатация (в том числе текущие ремонты), реконструкция, капитальный ремонт, снос здания или сооружения.

Воздействие - явление, вызывающее изменение напряженно-деформированного состояния строительных конструкций и (или) основания здания или сооружения.

- механическая сила, прилагаемая к строительным конструкциям и (или) основанию здания или сооружения и определяющая их напряженно-деформированное состояние

Нормальные условия эксплуатации - учтенное при проектировании состояние здания или сооружения, при котором отсутствуют какие-либо факторы, препятствующие осуществлению функциональных или технологических процессов.

Динамические параметры зданий и сооружений - параметры зданий и сооружений, характеризующие их динамические свойства, проявляющиеся при динамических нагрузках, и включающие в себя периоды и декременты собственных колебаний основного тона и обертонов, передаточные функции объектов, их частей и элементов и др.

Физический износ здания - ухудшение технических и связанных с ними эксплуатационных показателей здания, вызванное объективными причинами.

Моральный износ здания - постепенное (во времени) отклонение основных эксплуатационных показателей от современного уровня технических требований эксплуатации зданий и сооружений.

Текущее техническое состояние зданий и сооружений - техническое состояние зданий и сооружений на момент их обследования или проводимого этапа мониторинга.

Аварийное состояние - категория технического состояния строительной конструкции или здания и сооружения в целом, включая состояние грунтов основания, характеризующаяся повреждениями и деформациями, свидетельствующими об исчерпании несущей способности и опасности обрушения и (или) характеризующаяся кренами, которые могут вызвать потерю устойчивости объекта.

Обследование - комплекс мероприятий по определению и оценке фактических значений контролируемых параметров, характеризующих эксплуатационное состояние, пригодность и работоспособность объектов обследования и определяющих возможность их дальнейшей эксплуатации или необходимость восстановления и усиления.

Мониторинг - это систематическое или периодическое наблюдение за деформационно-напряжённым состоянием конструкций, или деформациями зданий (или сооружений) в целом, за состоянием грунтов, оснований и подземных вод в зоне строительства, своевременная фиксация и оценка отступлений от проекта, требований нормативных документов, сопоставление результатов прогноза взаимного влияния объекта и окружающей среды с результатами наблюдений с целью оперативного предупреждения или устранения выявленных негативных явлений и процессов.

Общий мониторинг технического состояния зданий и сооружений - система наблюдения и контроля, проводимая по определенной программе, утверждаемой заказчиком, для выявления объектов, на которых произошли значительные изменения напряженно-деформированного состояния несущих конструкций или крена, и для которых необходимо обследование их технического состояния (изменения напряженно-деформированного состояния характеризуются изменением имеющихся и возникновением новых деформаций или определяются путем инструментальных измерений).

Мониторинг технического состояния зданий и сооружений, попадающих в зону влияния строек и природно-техногенных воздействий - система наблюдения и контроля, проводимая по определенной программе на объектах, попадающих в зону влияния строек и природно-техногенных воздействий, для контроля их технического состояния и своевременного принятия мер по устранению возникающих негативных факторов, ведущих к ухудшению этого состояния.

Что представляет собой мониторинг деформаций зданий?

Это систематические наблюдения за факторами, определяющими степень и скорость деформации зданий.

Мониторинг деформаций зданий выполняется непрерывно за данный период, что позволяет определить динамику деформационного процесса у фундаментов, стен, колонн, перекрытий, лестниц и элементов несущих жестких конструкций, зафиксировать изменения свойств грунта под сооружением.

  • оценка актуального состояния аварийного объекта,
  • обеспечение безопасности эксплуатации построек, попадающих в зону воздействия нового строительства, реставрации или реконструкции
  • определение скорости и степени изменения технического состояния постройки.

Можно проводить исследование состояния строящихся соседних зданий или следить за динамикой раскрытия трещин в готовых объектах.

Почему нужно проводить мониторинг деформаций зданий?

Любые строительные работы обусловливают увеличение нагрузки на основания, нарушение целостности подземного пространства, организацию дополнительных магистральных коммуникаций – все это в разной степени воздействует на технические параметры окружающих сооружений. За счет выполнения мониторинга деформаций зданий застройщики получают целостную картину состояния близлежащих строений. Могут контролировать текущий рабочий процесс для предотвращения непредвиденных последствий проводимых работ.

Когда может потребоваться услуга мониторинга?

Профессиональный мониторинг зданий при строительстве проводят, когда необходимо осуществить ряд мероприятий в застроенном районе. Это может быть забивка свай, отрыв котлована или устройство коммуникаций, реконструкция архитектурных исторических памятников, а также в случаях:

  • окончания нормативного периода эксплуатации дома,
  • обнаружения дефектов в процессе технического обслуживании строения домовладельцем,
  • изменения целевого назначения постройки,
  • продажи или приобретения недвижимости,
  • определения пригодности объекта к использованию после пожара,
  • выявления последствий после природных бедствий,
  • предписания органов строительного надзора.

Мониторинг осадок здания

позволяет разработать своевременные, адекватные решения для предотвращения воздействия негативных факторов на соседние сооружения при строительстве, гарантировать жильцам и домовладельцам безопасность проводимых ремонтных или строительных работ.

Длительное наблюдение за возможными осадками здания в зоне строительства позволяет:

  • установить степень и скорость деформации (осадки) здания,
  • вести контроль за изгибами, прогибами или кренами здания.

Эти наблюдения особенно актуальны при разработке котлованов и забивке свай, проводятся согласно ГОСТ 31937-2011.

Этапы обследования строящихся соседних зданий

Алгоритм технического мониторинга:

  1. Общий анализ проектных документов.
  2. Подготовительные работы.
  3. Визуальный осмотр конструкции.
  4. Предварительная оценка предстоящих объемов работ.
  5. Монтажные мероприятия.
  6. Инструментальное обследование здания (выявление глубины карбонизации бетонных плит, определение состояния арматуры, несущих балок, прочих конструкционных элементов).

По окончании исследовательских работ специалисты составляют карты дефектов, детальные таблицы, чертежи поверочных расчетов, отражающих реальное состояние сооружения.

Документы, получаемые после мониторинга

Результат мониторинга деформаций зданий эксперты отражают в экспертно-техническом заключении. Это пакет документов:

  • обмерные чертежи,
  • карты дефектов и вскрытий,
  • фотоотчет с подробным описанием снимков,
  • таблицы испытаний,
  • заключение с присвоением исследуемому объекту категории выявленного технического состояния, соответствующей нормам ГОСТ и СП 13-102-2003,
  • расчеты физического, морального износа конструкции в целом,
  • список рекомендованных мероприятий для устранения обнаруженных дефектов, рекомендации относительно дальнейшей эксплуатации.

Заключение подписывают эксперты, выполняющие испытания, руководители подразделений, руководство компании.

Какие разрешения должна иметь компания?

Для правомерного мониторинга деформаций зданий специалисты компании должны иметь допуск к соответствующим работам. Сама компания – разрешающее свидетельство на осуществление работ, оказывающих воздействие на безопасность коммерческой, жилой недвижимости.

Сколько стоит мониторинг здания и сооружения?

Цену организации мониторинговых работ определяет ряд параметров: трудоемкость технического задания, масштаб работ, объем поставленных перед экспертами задач.

Учитывая наличие различных условий, стоимость исследования рассчитывается специалистами индивидуально для конкретного случая.

Что дает мониторинг имеющихся трещин?

В рамках полноценного обследования построек ответственным этапом выступает мониторинг трещин здания – определение причин их образования, динамики развития. Каждая трещина несет серьезную угрозу. Поскольку обычный осмотр редко помогает установить степень опасности, необходимо профессиональное наблюдение за развитием трещин в готовых конструкциях.

Процесс наблюдения за развитием расщелин предусматривает установку маячков на стены здания, которые помогают контролировать протекание деформаций в сооружениях, предотвратить обрушения или аварии. При мониторинге раскрытия трещин установка маяков на здание дает возможность четко фиксировать происходящие изменения. Это могут быть электронные, гипсовые, пластичные или точечные маячки.

Результаты обследования позволяют домовладельцам разработать, принять меры по дальнейшей эксплуатации сооружений, определить тип ремонтных мероприятий для устранения развития трещин. Лаборатория строительной экспертизы "А-эксперт" предлагает правомерные, компетентные услуги по выполнению строительного мониторинга в Москве, Санкт-Петербурге и других регионах России. Мы располагаем штатом опытных, сертифицированных специалистов, передовой технической базой для проведения мониторинговых работ на уровне мировых стандартов.

Здание не может быть всегда крепким и надежным. Оно со временем слабеет, деформируются его конструкции и элементы. Ещё серьезнее обстоит дело, когда рядом проводятся капитальные работы. Это - или новое строительство, или серьезные земляные работы. Здания стоят на фундаментах, а фундаменты стоят на земле. Т.е., земля - это тоже фундамент. Здание давит на землю, оно на землю опирается. Из-за этого возникают вертикальные и горизонтальные силы, действующие на грунт. И, если неподалеку от здания начать рыть котлован, то в земле в районе котлована происходят микросдвиги и плотность земли, которая находится под зданием, начинает из-за этого уменьшаться. Если за этим процессом не следить и не принять фиксирующие, укрепляющие меры, то здание может деформироваться, наклониться (Пизанская башня) и даже разрушиться. Чтобы этого не произошло, закажите мониторинг.

Внимание

Деньги за экспертизу Вам возместит проигравшая сторона.

– длительное по времени наблюдение за осадками одного или нескольких зданий при помощи комплекса изысканий, геодезических изысканий , инженерно обследовательских, геологических методов при строительстве в стесненных условиях городской застройки.

Компания «Центр проектирования и инжиниринга СА» Имеет значительный опыт и проводит работы по мониторингу зданий и сооружений.

Цель: определить степень и скорость деформации (осадки) зданий, так же контроль за изгибами, прогибами и креном здания или ряда зданий попадающие в зону нового строительства.
Чаще всего мониторинг проводят при отрывке котлованов, забивке свай или прокладке коммуникаций в зоне существующих зданий.

Кроме того, происходят реконструкции исторических архитектурных памятников, а уже построенные дома требуют обследования для оценки их состояния и пригодности для дальнейшего использования (допустим, при подготовке к продаже). Мы обследуем на арендованных автовышках все фасады на предмет трещин. Все это требует проведения определенного комплекса исследований с применением соответствующих методик и оборудования – мониторинга. Причем допуск к подобным работам имеют только высококвалифицированные специалисты с лицензией на проведение подобных исследований. Компания ЦПИ СА имеет штат именно таких сотрудников. Она поможет быстро и качественно решить проблемы, проведя мониторинг вашей недвижимости.

Что такое мониторинг зданий

Мониторинг зданий и сооружений представляет собой контроль за функционированием различных систем: надежности всей конструкции, инженерной сети и ее отдельных узлов, контроль за состояние грунтового массива и т.д. Все это включает инженерные исследования, геодезические измерения, инженерно-геологические изыскания, измерение возможных деформаций и еще целого комплекса необходимых измерений.

Результаты испытания грунта методом компрессорного сжатия 1

План расстановки марок

Результаты испытания грунта методом компрессорного сжатия 2

Когда и с какой периодичностью?

По действующей нормативной базе каждое здание и сооружение подлежит обследованию через два года после ввода в эксплуатацию. В дальнейшем его проводят через определенные периоды времени:

  • Для конструкций, работающих в неблагоприятной среде (агрессивные среды, вибро- и сейсмонагрузки, повышенная влажность и др.) проверка проводится раз в 5 лет.
  • Для обычной среды – один раз в 10 лет.
  • Для исторических построек и памятников – постоянный режим наблюдения.
  • После окончания нормативного срока эксплуатации объекта.
  • При появлении значительных дефектов и повреждений при техническом обслуживании сооружения владельцем.
  • Изменение целевого назначения здания. Перед перепрофилированием проводятся исследования, доказывающие его пригодность для эксплуатации под новые функции.
  • При продаже-покупке объектов недвижимости. Перед продажей владелец обязан предоставить документ, подтверждающий пригодность объекта для дальнейшей эксплуатации.
  • Для определения пригодности сооружения для эксплуатации после пожара. Модуль упругости и предел текучести бетона, основного строительного материала в наши дни, значительно ухудшаются после воздействия высокой температуры и последующего охлаждения струей воды из пожарных гидрантов.
  • В случае произошедших стихийных бедствий (землетрясений силой от 7 баллов по шкале Рихтера и т.д.) и аварий, повлекших разрушение объекта.
  • По предписанию органов государственного строительного надзора.

Этапы проведения мониторинга

Этапы проведения подобных операций нашими специалистами имеют четкую последовательность:

  • Анализ предоставленной клиентом документации: проект, исполнительная документация, результаты ранее проведенных исследований и др.
  • Визуальное обследования объекта и предварительная оценка объемов работ.
  • Очистка фасадов зданий от высолов и гидрофобизация.
  • Проведение обследования строительных конструкций при помощи специальных инструментов - инструментальное обследование зданий . Выполняются различные работы по определению состояний несущих балок, глубины карбонизации бетона, состоянии арматуры и т.д.
  • При необходимости измерения включают разрушающие методы: проход шурфов, контрольные вскрытия и др.
  • После проведенных исследований составляются точные чертежи, карты дефектов и таблицы проверочных расчетов.

Результаты мониторинга для заказчика

Результаты проведенных исследований отражаются в техническом заключении, которое представляет собой пакет документов:

  • Само техническое заключение с обозначением размеров и описанием всех строительных конструкций (фундамент, стены, кровля, пол, плиты, балки и т.д.)
  • Точные обмерные чертежи с привязкой всех несущих конструкций.
  • Карты дефектов. При обследовании уже введенных в эксплуатацию домов и строений.
  • Карта вскрытий, сделанных для проведения мониторинга. На нее наносятся места проведенных вскрытий конструкций для анализа их состояния, а также места сделанных шурфов с привязкой к геодезической сетке.
  • Фото отчет со снимками и подробное описание каждого снимка.
  • Таблицы испытаний и обработка их результатов.
  • Техническое заключение о состоянии объекта с присвоением категории технического состояния по ГОСТ Р 53778-2010 и СП 13-102-2003.
  • Расчет морального и физического износа зданий и сооружений, находящихся в эксплуатации.
  • Список необходимых работ для устранения выявленных дефектов и проведения ремонта, рекомендации по дальнейшей эксплуатации.

Заключение по результатам проведенных работ подписывается самими специалистами, проводившими испытания. Затем оно утверждается их непосредственными руководителями подразделений и руководством компании. Заключение служит основанием для заданий на проектирование дальнейших работ по укреплению конструкций обследованного объекта, если это необходимо. В случае выявления значительных повреждений конструкций здания, заказчик немедленно информируется, а также направляется информация в органы госнадзора за строительством. Все результаты исследований заносятся в паспорт обследованного строения.

Мониторинг зданий и сооружений – одно из направлений деятельности компании ЦПИ СА. Высококвалифицированные специалисты, обладая большим опытом проведения работ в этой области, проведут обследования в минимальные сроки, но абсолютно не теряя качества работ.



Закажите мониторинг зданий и сооружений в компании Центр Проектирования и Инжиниринга.

Свяжитесь с нами!

Ирования.

Применяют для уникальных, высотных и технически сложных зданий.

Мониторинг, осуществленный на стадии изысканий, должен дополняться мониторингом на стадии с роительства. Посл дний, обеспечивает получение данных о ходе выпол нения проекта и изменениях в окружающей среде, а для ответственных сооружений является источником инфо рмации для принятия решений в ходе научного сопровождения строительства.


Цель. При выборе системы наблюдений необходимо учитывать цель проведения мониторинга, а так- же скорости протекания процессов и их изменение во времени, продолжительность измерений, ошибки измерений, в том числе за счет изменения состояния окружающей среды, а также влияния помех и аномалий природно-техногенного характера. Программу проведения мониторинга согласовывают с заказчиком. В ней, наряду с перечислением видов работ, устанавливают периодичность наблюдений с учетом технического состояния объекта и общую продолжительность мониторинга. (Основной целью мониторинга является формирование плана капитального ремонта по стратегии "ремонт по отказу".

Цель мониторинга - проведение наблюдений и своевременное выявление недопустимых отклонений в поведении вновь существующих объектов, находящихся в зоне влияния нового строительства, а также сохранение окружающей природной среды.

Мониторинг технического состояния включает в себя сплошное обследование жилищного фонда один раз в пять лет для планирования капитального ремонта.

Рассмотрим принципиальную схему мониторинга здания

Рис. 2. Блок схема инструментального мониторинга высотного комплекса «Континенталь» в Москве.

На рис. 3 показаны примеры инструментального оснащения схем мониторинга для плитного фундамента (Москва), а также и для плитно-свайного (Казань). Инструментальное оснащение мониторинга может варьироваться, но основными элементами являются:

Скважинные измерения осадок в грунтах, при малом числе скважин - дополняются измерениями наклонов,

Измерения порового давления и вариации уровня грунтовых вод,

Определения нагрузок на грунт и напряжений в фундаментной плите и сваях,

Измерение напряжений в конструкциях: стенах, пилонах и колонах,

Наблюдение колебаний здания.

Рис.3. Примеры инструментального оснащения схем мониторинга для плитного фундамента А(Москва), а также и для плитно-свайного В(Казань).

Задачи. Обеспечение безопасной эксплуатации зданий и сооружений промышленных предприятий является актуальной задачей, которая решается комплексом мер на стадиях от проектирования до ликвидации объекта. Обеспечение промышленной безопасности зданий и сооружений осуществляется на основе действующих нормативно-правовых документов, которые устанавливают требования непосредственно к конструкциям зданий и сооружений, по надзору за их техническим состоянием, к технологическим процессам, размещаемым в зданиях и сооружениях, к работающему и обслуживающему персоналу предприятий.

В зависимости от поставленныз задач натурные обследования зданий и сооружений охватывают следующие этапы:

Предварительное обследование,

Детальное инструментальное обследование,

Определение физико-технических характеристик материалов обследуемых конструкций в лабораторных условиях,

Обобщение результатов обследований.

Предварительное обследование зданий и сооружений: определение общего состояния строительных конструкций, определение состава исследований, сбор первичной информации по объекту.

Детальное инструментальное обследование направлено на выявление: факторов, формирующих производственную среду и сравнение с нормативными требованиями; технического состояния несущих и ограждающих конструкций.

На практике постоянный мониторинг по экономическим со­ображениям предпринимается достаточно редко и только по от­ношению к отдельным сооружениям, причем по большей части с конкретными задачами. С общеметодической точки зрения такой мониторинг правильнее было бы назвать «длительным специаль­ным обследованием» или «подконтрольной эксплуатацией» инже­нерного сооружения.

Для подобной практики имеются, как минимум, три основания:

Дороговизна оборудования;

Сложность обработки больших массивов постоянно поступа­ющей информации и неотработанность механизмов оперативного принятия решения на ее основе;

Ограниченность номенклатуры доступных к универсальному использованию приборных систем, предназначенных для этой цели.

Управление риском в настоящее время является наиболее перспективным направлением, которое может включать в себя компоненты ранее разработанных методов оценки безопасности объектов. При этом, реализация методов управления рисками необходимо осуществлять с внедрением систем мониторинга объекта. На рис. 4 представлен подход по реализации методов оценки и управления рисками, контроля и мониторинга объектов с применением существующей системы по проведению экспертизы зданий и сооружений.

Рис.4. Повышение безопасности зданий и сооружений с применением методов управления рисками и мониторинга.

Повторное обследование зданий и их элементов, находящихся в аварийном состоянии, – раз в шесть месяцев, находящихся в ветхом состоянии – раз в год, в неудовлетворительном состоянии – раз в два года, а также выборочное обследование отдельных конструкций и систем по запросам владельцев при выходе их из строя, повреждениях, нарушениях режимов с ежегодным анализом всех заявок, поступивших в объединенные диспетчерские системы (ОДС), для планирования текущего ремонта и технического обслуживания (ТО).

До начала обследования собираются и анализируются архивный материал, содержащий информацию о техническом состоянии зданий района, выполненных ремонтных работах, акты и предписания специализированных эксплуатационных организаций о состоянии инженерного оборудования (лифты, противопожарная автоматика и дымоудаление, электроснабжение, вентиляция). Анализируются заявки, полученные на ОДС. [ 4,256]

На основании этих данных выдается задание на обследование каждого дома с учетом особенностей зданий и наиболее слабых элементов.

Осматривают все подвалы, чердаки, лестничные клетки, общие холлы и т. д. Выборочно проверяют квартиры, обязательно на первых и последних этажах, в торцовых секциях. Минимальный осмотр составляет 25% от общего количества квартир в доме. В каждом помещении обследуются все конструкции и инженерное оборудование. Описание дефектов заносится в рабочий журнал. При невозможности определить причины деформаций и повреждений визуальным способом проводится дополнительное инструментальное обследование.

Особо выделяются аварийные участки и узлы; их подробно описывают.

Полностью осматривают кровли и фасады. Для различных типов зданий установлен объем репрезентативной выборки количества обследования квартир. При обследовании инженерных систем выделяются их части в подвалах, квартирах, на чердаках. Непосредственно в ходе обследования выдаются рекомендации и предписания на необходимые срочные ремонтно-восстановительные или охранные работы.

После проверки всех помещений полученная информация с учетом данных архива и ОДС классифицируется по видам конструкций И систем. В бланк, заполняемый на каждое строение, заносят паспортные данные и сведения о капитальных ремонтах, приведенных в здании.

В разделе «Результаты обследования» отмечается техническое состояние 23 элементов здания (по схеме: конструкция; перечень дефектов и повреждений; объем повреждений в процентах от общего объема элемента; общая характеристика технического состояния элемента.

Описание дефектов и повреждений дастся по методике определения физического износа жилых зданий (ВСН-53-86 (р)), которая разработана в помощь специалистам, выполняющим обследование; в ней дано подробное описание возможных дефектов н повреждений конструкций и систем различной модификации элементов с указанием минимального объема контроля.

Техническое состояние каждого элемента оценивается как аварийное, когда требуется срочный ремонт или замена (А), неудовлетворительное (Н) или удовлетворительное (У).

По совокупности состояния элементов техническое состояние здания оценивается как аварийное, когда конструкции грозят обрушением; неудовлетворительное, если эти характеристики преобладают в большинстве элементов; частично неудовлетворительное, если в неудовлетворительном состоянии находятся только несколько элементов, и удовлетворительное.

Обследование выполняется высококвалифицированными специалистами, прошедшими специальный курс обучения. Достоверность данных обследования выборочно проверяет руководитель бригады в каждом административном округе города, техническое состояние оценивается в присутствии представителей владельца здания и подрядной организации, отвечающей за его эксплуатацию.

В выходном документе (заключении о техническом состоянии жилого строения) отражаются: паспортные данные, включая серию здания, гол постройки, физический износ по данным БТИ, а также информация о наличии технической документации на здание (технические заключения, проекты ремонта и т. п.) и результаты предыдущего обследования технического состояния.

Приводится информация о выполнении рекомендаций предыдущего обследования по капитальному ремонту элементов здания (включая объем ремонта); затем результаты обследования технического состояния конструкции и систем здания с указанием объема повреждений по состоянию на день обследования; далее данные специализированных эксплуатационных организаций о техническом состоянии систем вентиляции, газоходов, лифтов, электроснабжения, газоснабжения, противопожарной автоматики и дымоудаления и дополнительные данные, освещающие индивидуальные особенности зданий и состояние их конструкций. В итоге делаются выводы по результатам обследования по зданию в целом и рекомендации по ремонтно-восстановительным работам на ближайшие пять лет.

Результаты обследований используются при выявлении приоритетов в обеспечении безаварийного содержания жилых домов, предупреждении появлений аварий и отказов основных строительных конструкций, формировании титульных списков на капитальный ремонт зданий и отдельных конструкций и их систем, контроле над эффективным использованием бюджетных и привлеченных средств, выделяемых на содержание жилищного фонда.

Накопленная и формализованная информация ласт возможность решать оперативные и стратегические задачи по организации технического обслуживания и ремонта жилищного фонда.

Компьютерные программы, существующие в настоящее время, позволяют представлять и анализировать возможные варианты планов технического обслуживания и ремонта (ТОиР), выбирать из них экономически выверенные и рациональные.


Актуальной проблемой на сегодняшний день является разработка разнообразных систем мониторинга конструкций зданий и сооружений, и внедрение их в практику строительства.

Одно из них это - волоконно-оптические измерительные системы: свойства, принципы, применение.

Современное состояние строительной науки и практики в области градостроительства, инфраструктуры наземных транспортных коммуникаций, возведения сооружений в сейсмоопасных регионах, сооружения атомных станций и других актуальных приложений настоятельно требует разработки эффективных методик непрерывного исследования состояния материала строительных конструкций и воздействующих нагрузок. Развитие цивилизации в целом приводит, с одной стороны, к созданию новых методов для достижения большей надежности и безопасности, а, с другой стороны – к формированию условий повышенного потенциального риска техногенных катастроф. В этой связи усилия разработчиков систем мониторинга надежности направлены на создание смарт-технологий, способных организовать непрерывную автономную диагностику каких-либо конструкций, в режиме реального времени.

Современные волоконно-оптические датчики позволяют измерять многие физические параметры: деформацию, давление, температуру, расстояние, положение в пространстве, скорость вращения, скорость линейного перемещения, ускорение, колебания, массу, звуковые волны, уровень жидкости, концентрацию газа, и т.д..

Волоконно-оптические измерительные системы представляют собой набор волоконно-оптических датчиков (ВОД), объединенных в единую сеть той или иной топологической конфигурации с заданным алгоритмом опроса, которые целесообразно разделить на два широких класса в зависимости от роли волоконного световода (ВС), которую он играет в ВОД:

1. ВС выполняет только транзитную функцию среды-носителя для передачи оптического излучения к чувствительному элементу (ЧЭ), расположенному в зоне измерений;

2. ВС является средой-носителем для передачи сигналов и одновременно является чувствительным элементом ВОД.

В первом случае чувствительный элемент ВОД представляет собой объект, инородный по отношению к ВС, обладающий свойством изменять характеристики световой волны (амплитуда, фаза, поляризация, длина волны и т.д.) вследствие изменения измеряемого физического параметра. При этом чувствительный элемент находится в контакте с точкой среды, параметры которой (или параметры некоторой окрестности которой) контролируются ВОД. Поэтому для организации мониторинга, распределенного в некоторой трехмерной области сплошной среды, требуется наличие нескольких ВОД. Количество точек измерения можно определить как произведение количества ВОД на число измерительных каналов одного ВОД. Схема измерительных систем такого типа представлена на рис. 4.1.

Во втором случае волоконный световод в определенном смысле суть объект и субъект измерений одновременно. При этом предполагается, что имеется взаимнооднозначное соответствие между состоянием участка световода и параметрами окружающей его среды. Измерительные системы этого типа используют свойства световода преобразовывать измеряемые воздействия в соответствующие изменения характеристик световой волны, распространяющейся по световоду. В этом случае значительно упрощается оптическая схема измерительной системы и появляется возможность осуществлять распределенный контроль состояния объекта вдоль трассы прокладки волоконного световода. Соответствующая упрощенная схема измерительных систем представлена на рис.4.2.

Целенаправленное изучение вопросов мониторинга с помощью волоконно-оптических измерительных систем, активно происходящее за рубежом, определяют необходимость анализа европейских и американских исследований в этом направлении. (Приложение 2)

Для осуществления такого мониторинга необходимо уже при разработке проектно-сметной документации предусматривать наличие в возводимом объекте устройств, контролирующих состояние его конструкций и элементов, сбор и отображение информации о напряжениях, деформациях, температуре, влажности и т.д. в контролируемых точках объекта. Мониторинг технического состояния элементов и конструкций уникальных объектов может проводиться и с использованием переносного комплекта приборов и устройств с определенной периодичностью в ходе эксплуатации объектов.

Такой подход позволит избежать внезапного возникновения аварийных ситуаций и обеспечит успешную и экономичную эксплуатацию сложных зданий и сооружений. Вместе с тем, для реализации такого подхода необходима соответствующая доработка нормативно-технической документации в области обследования технического состояния зданий и сооружений, учитывающая технико-экономическую эффективность этого мероприятия.

Заключение

Мониторинг технического состояния зданий и сооружений является самостоятельным направлением строительной деятельности, охватывающим комплекс вопросов, связанных с обеспечением эксплуатационной надежности зданий, с проведением ремонтно-восстановительных работ, а также с разработкой проектной документации по реконструкции зданий и сооружений.

Объем мониторинга зданий и сооружений увеличивается с каждым годом, что является следствием ряда факторов: физического и морального их износа, перевооружения и реконструкции производственных зданий промышленных предприятий, реконструкции малоэтажной старой застройки, изменения форм собственности и резкого повышения цен на недвижимость, земельные участки и др. Особенно важно проведение мониторинга зданий и сооружений, что часто связано с изменением действующих нагрузок, изменением конструктивных схем и необходимостью учета современных норм проектирований зданий. В процессе эксплуатации зданий вследствие различных причин происходят физический износ строительных конструкций, снижение и потери их несущей способности, деформации как отдельных элементов, так и здания в целом. Для разработки мероприятий по восстановлению эксплуатационных качеств конструкций, необходим мониторинг с целью выявления причин преждевременного износа понижения их несущей способности.

При мониторинге зданий и сооружений применяется лучшее оборудование и приборы, внесенные в Госреестр средств измерения РФ.

Большое значение для реального контроля технического состояния зданий и сооружений города с большепролетными конструкциями имеет аппаратурное обеспечение этого процесса. В этом направлении необходимо на основе исследований предлагаемых рынком систем, приборов и устройств создать каталог оборудования, рекомендуемого для мониторинга текущего технического состояния зданий и сооружений с большепролетными конструкциями. Кроме того, для мониторинга особо сложных и больших уникальных объектов с большепролетными конструкциями необходимо совершенствование оборудования и разработка комплексной автоматизированной станции, в том числе на беспроводной основе..

Список использованной литературы

1. Национальный стандарт РФ ГОСТ Р 53778-2010 "Здания и сооружения. Правила обследования и мониторинга технического состояния" (утв. приказом Федерального агентства по техническому регулированию и метрологии от 25 марта 2010 г. N 37-ст). Москва, Стандартинформ,2010

2. Бойко М.Д. Техническое обслуживание и ремонт зданий и сооружений. Л., Строй¬издат, 1986г.

3. Касьянов В.Ф., Калинин В.М., Авдеева Т.А., Сокова С.Д. Оценка технического состояния эксплуатируемых зданий и инженерных систем. М., МИСИ им. В.В. Куйбышева 1993г.

4. Козачек В.Г., Нечаев Н.В., и др. Обследование и испытание зданий и сооружений. ФГУТТ «Издательство «Высшая школа», М., 2004г., 446с.

5. Порывай Г.А., Датюк О.В. Техническая эксплуатация зданий. М., МИСИ им. В.В. Куйбышева, 1983г.

6. Стражников А.М., Ройтман А.Г., Мониторинг технического состояния жилых зданий. Опыт городов и регионов. Москва. 2000г.,9с.

7. Шубин Л.Ф., Датюк О.В., Кононович Ю.В. и др. Примеры расчетов по организации и управлению эксплуатацией зданий. М., Стройиздат, 1991г.

8. http://fire01.ucoz.ru/publ В.В. Гурьев. Опыт Российской инженерной академии и ГУП МНИИТЭП в области мониторинга безопасности строительных конструкций.

9. http://www.zetms.ru/support/articles/seismo/building_monitor.php?print=Y Капустян Н. К, Вознюк А. Б.Опыт проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий/

10. Свод правил по проектированию и строительству Проектирование и устройство оснований и фундаментов зданий и сооружений и N 28 от 9 марта 2004 г


Байбурин, Р.А. Концепция системы мониторинга и управления рисками на резервуарных парках [Текст]/Р.А. Байбурин, Н.Х. Абдрахманов//Промышленная безопасность на взрывопожарных и химически опасных производственных объектах. Технический надзор, диагностика и экспертиза, 2007

Варфоломеев, А.Ю. Автоматизированная система диагностики промышленного оборудования [Текст]/А.Ю. Варфоломеев, А.В. Микулович, В.И. Микулович, В.Т. Шнитко//Техническая диагностика и неразрушающий контроль, 2006, №4

Введенский, П.В. Современные приборы мониторинга и диагностики промышленных сооружений [Текст]/П.В. Введенский //Промышленная безопасность на взрывопо-жарных и химически опасных производственных объектах. Технический надзор, диагностика и экспертиза, 2007

Харебов, В.Г. Система комплексного диагностического мониторинга опасных производственных объектов [Текст]/В.Г. Харебов, Ю.П. Бородин, В.А. Шапорев//В мире неразрушающего контроля, 2006, №4 (34)

Потапкин, Е.В. Мониторинг существующих зданий и возводимых объектов – единый механизм строительства [Текст]/ Е.В. Потапкин//Промышленное и гражданское строительство, 2006, №12

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!